1. LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles
- Author
-
Antoneta Iuliana Bratcu, Seddik Bacha, Iulian Munteanu, Adrian Florescu, Axel Rumeau, G2Elab-SYstèmes et Réseaux ELectriques (G2Elab-SYREL), Laboratoire de Génie Electrique de Grenoble (G2ELab), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Battery (electricity) ,real-time simulation ,Engineering ,business.product_category ,energy management ,Energy management ,linearization techniques ,020209 energy ,02 engineering and technology ,Linear-quadratic-Gaussian control ,7. Clean energy ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,optimal control ,Control theory ,Electric vehicle ,Electric vehicles (EVs) ,0202 electrical engineering, electronic engineering, information engineering ,gain scheduling ,Optimal projection equations ,Electrical and Electronic Engineering ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,020208 electrical & electronic engineering ,Control engineering ,Optimal control ,Gain scheduling ,Control and Systems Engineering ,Load regulation ,business - Abstract
International audience; This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources---a battery and an ultracapacitor (UC)---for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig---based on employing a real UC---validate the proposed optimal power flow management approach.
- Published
- 2015