1. Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging
- Author
-
Marc Robini, Alessandro Ramalli, Christian Cachard, Emmanuel Roux, Piero Tortoli, Herve Liebgott, Department of Information Engineering [Firenze], Università degli Studi di Firenze [Firenze], Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 3 - Imagerie Ultrasonore, Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE ), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Imagerie Ultrasonore, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE)
- Subjects
Optimization ,Engineering ,Scanner ,2-D transducers ,Acoustics and Ultrasonics ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,02 engineering and technology ,01 natural sciences ,Imaging ,Sparse array ,simulated annealing (SA) ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Electrical and Electronic Engineering ,Wideband ,010301 acoustics ,Instrumentation ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,business.industry ,3-D ultrasound (US) ,020208 electrical & electronic engineering ,Finite element analysis ,Volume (computing) ,Two dimensional displays ,Acoustics ,Function (mathematics) ,Finite element method ,Simulated annealing ,Three-dimensional displays ,Probes ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,sparse array ,Energy (signal processing) - Abstract
Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the $N_{\mathrm{ e}}$ elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a $32 \times 32$ array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.
- Published
- 2017
- Full Text
- View/download PDF