1. Miniaturization of 2 × 4 90-Degree Hybrid Optical Couplers
- Author
-
Alessio Miranda, Weiming Yao, Jos J. G. M. van der Tol, Kevin A. Williams, and Photonic Integration
- Subjects
optical strip waveguide components ,Photodetectors ,Integrated optics ,Phase detection ,optical signal detection ,Optical coupling ,Condensed Matter Physics ,Indium phosphide ,Optical waveguide components ,Atomic and Molecular Physics, and Optics ,III-V semiconductor materials ,Waveguide components ,indium compounds ,Photonics ,Multimode waveguides ,Performance evaluation ,Local oscillators ,Electrical and Electronic Engineering ,Couplers - Abstract
In this work we study the limits of miniaturization of a 90-degree hybrid coupler working in the L, C and S bands, with respect to a number of performance parameters aimed at its application for balanced detection. We investigate the main effects responsible for the degradation of the performance of the devices during miniaturization, and establish the minimal dimension that such devices can have without significant degradation for photonic applications such as balanced detection. The miniaturized device in InP generic technology has a footprint of only 2200μ m2 , more than 5 times smaller than the conventional device used as reference. The scaling approach is based on the use of the number of propagating modes which are sustained in both the miniaturized MMI and port waveguides as scaling parameters. This approach allows us to generalize the miniaturization problem from a specific platform and offers a methodology which is flexible and transferable to multiple platforms. We tested the scaling methodology based on the number of modes in other platforms commonly used in integrated photonics, such as Si/SiO2(SOI), TriPleX or polymer platforms, obtaining comparable results and proving the universality of our approach, finally we performed a fabrication tolerance analysis of the miniaturized devices.
- Published
- 2023
- Full Text
- View/download PDF