1. Ensemble-Based Deep Learning Model for Network Traffic Classification
- Author
-
Ons Aouedi, Kandaraj Piamrat, Benoit Parrein, Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ), Software Stack for Massively Geo-Distributed Infrastructures (STACK), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N), Nantes Université (Nantes Univ)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), STR (LS2N - équipe STR ), and Nantes Université (Nantes Univ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
- Subjects
machine learning ,Computer Networks and Communications ,decision tree ,ensemble learning ,deep learning ,[INFO]Computer Science [cs] ,Electrical and Electronic Engineering ,Blending ,traffic classification - Abstract
International audience; Network Traffic Classification enables a number of practical applications ranging from network monitoring to resource management, with security implications as well. Nowadays, traffic classification has become a challenging task in order to distinguish among a variety of applications due to the huge amount of generated traffic. Therefore, developing Machine Learning (ML) models, which can successfully identify network applications, is one of the most important tasks. However, among the ML models applied to network traffic classification so far, no model outperforms all the others. To solve these issues, this paper proposes a novel Deep Learning (DL)-based approach that incorporates multiple Decision Tree based models. This approach employs a non-linear blending ensemble method by combining tree-based classifiers through DL in order to maximize generalization accuracy. This ensemble consists of two levels called base classifiers and meta-classifiers. In the first level, Decision Tree-based models are used as the base classifiers while in the second level, DL is used as a meta-model to combine the outputs of the base classifiers. Using two publicly available datasets, we show that our proposed ensemble is suitable for network traffic classification and outperforms the linear blending (using logistic regression as meta-model) as well as several well-known ML models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), AdaBoost, K-Nearest Neighbors (KNN), LightGBM, Catboost, and XGBoost.
- Published
- 2022
- Full Text
- View/download PDF