1. ColdADC_P2: A 16-Channel Cryogenic ADC ASIC for the Deep Underground Neutrino Experiment
- Author
-
C. Grace, D. Braga, H. Chen, D. Christian, M. Dabrowski, G. Deptuch, D. Dwyer, J. Fried, S. Gao, J. Hoff, S. Holm, C.-J. Lin, E. Lopriore, Y. Lu, K.-B. Luk, S. Miryala, T. Prakash, H. Richardson, A. Shenai, E. Tarpara, E. Vernon, and J. Zhang
- Subjects
Nuclear and High Energy Physics ,Biomedical Engineering ,Molecular ,deep underground neutrino experiment ,Atomic ,Nuclear & Particles Physics ,Other Physical Sciences ,Analog-to-digital conversion ,cryogenic electronics ,Particle and Plasma Physics ,Affordable and Clean Energy ,Nuclear Energy and Engineering ,Hardware_INTEGRATEDCIRCUITS ,Nuclear ,Electrical and Electronic Engineering ,Biotechnology - Abstract
The second and final version of ColdADC, called ColdADC_P2, is presented. ColdADC_P2 is a 16-channel, 12-bit, 2 MS/s digitizer application-specific integrated circuit (ASIC) intended for use inside the DUNE Far Detector. ColdADC_P2 contains two 16 MS/s pipelined analog-to-digital converters (ADCs) that each digitizes the output of eight sample-and-hold amplifiers (SHAs). Because the application requires immersion in liquid argon (LAr), ColdADC_P2 was developed using specialized design techniques for long-term reliability in cryogenic environments and a customized cryogenic standard cell library. ColdADC_P2, with a die area of approximately 52.4 mm2 and fabricated in 65-nm CMOS technology, achieves 130- μ V rms noise performance and 11.8-bit effective-number-of-bits (ENOB) at a temperature of 77 K, with channel-to-channel crosstalk of < 0.06% while dissipating 338 mW (21 mW per channel). Residual nonlinearity that is consistent with dielectric absorption in the capacitors internal to the ADC is corrected using a lookup table.
- Published
- 2022
- Full Text
- View/download PDF