1. Modeling of Short-Term Synaptic Plasticity Effects in ZnO Nanowire-Based Memristors Using a Potentiation-Depression Rate Balance Equation
- Author
-
Gianluca Milano, Enrique Miranda, and Carlo Ricciardi
- Subjects
Materials science ,Condensed matter physics ,Spice ,Nanowire ,02 engineering and technology ,Memristor ,Plasticity ,021001 nanoscience & nanotechnology ,Thermal conduction ,memristor ,nanowire ,short-term plasticity ,ZnO ,Computer Science Applications ,law.invention ,Computer Science::Emerging Technologies ,Neuromorphic engineering ,law ,Balance equation ,Equivalent circuit ,Electrical and Electronic Engineering ,0210 nano-technology - Abstract
This letter deals with short-term plasticity (STP) effects in the conduction characteristics of single crystalline ZnO nanowires, including potentiation, depression and relaxation phenomena. The electrical behavior of the structures is modeled following Chua's approach for memristive systems, i.e. one equation for the electron transport and one equation for the memory state of the device. Linear conduction is assumed in the first case together with a voltage-controlled rate balance equation for the normalized conductance. The devices are subject to electrical stimuli such as ramped and pulsed voltages of both polarities with varying amplitude and frequency. In each case, the proposed model is able to account for the STP effects exhibited by ZnO highlighting its neuromorphic capabilities for bio-inspired circuits. An equivalent circuit representation and the SPICE implementation of the compact model is also provided.
- Published
- 2020