1. Thermal effects in InGaAs/AlAsSb quantum-cascade lasers
- Author
-
V. D. Jovanović, Paul Harrison, C. A. Evans, Dragan Indjin, and Zoran Ikonic
- Subjects
Materials science ,Computer Networks and Communications ,business.industry ,Time constant ,Finite difference method ,Heterojunction ,Laser ,Atomic and Molecular Physics, and Optics ,Gallium arsenide ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Cascade ,Thermal ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Quantum - Abstract
A quantum-cascade laser (QCL) thermal model is presented. On the basis of a finite-difference approach, the model is used in conjunction with a self-consistent carrier transport model to calculate the temperature distribution in a near-infrared InGaAs/AlAsSb QCL. The presented model is used to investigate the effects of driving conditions and device geometries on the active-region temperature, which has a major influence on the device performance. A buried heterostructure combined with epilayer-down mounting is found to offer the best performance compared with alternative structures and has thermal time constants up to eight times smaller. The presented model provides a valuable tool for understanding the thermal dynamics inside a QCL and will help to improve operating temperatures.
- Published
- 2006
- Full Text
- View/download PDF