1. Post-reconstruction 3D single-distance phase retrieval for multi-stage phase-contrast tomography with photon-counting detectors
- Author
-
Pasquale Delogu, Renata Longo, Luigi Rigon, Diego Dreossi, Francesco Brun, Luca Brombal, Vittorio Di Trapani, Sandro Donato, Brun, Francesco, Brombal, Luca, Di Trapani, Vittorio, Delogu, Pasquale, Donato, Sandro, Dreossi, Diego, Rigon, Luigi, and Longo, Renata
- Subjects
Nuclear and High Energy Physics ,Image quality ,Computer science ,Context (language use) ,01 natural sciences ,photon-counting detector ,030218 nuclear medicine & medical imaging ,image artifacts ,010309 optics ,Image stitching ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,photon-counting detectors ,Computer vision ,Projection (set theory) ,Instrumentation ,Image resolution ,Radiation ,business.industry ,Detector ,Computed tomography ,Image artifacts ,Photon-counting detectors ,Single-distance phase retrieval ,X-ray phase contrast ,computed tomography ,Photon counting ,single-distance phase retrieval ,Artificial intelligence ,Phase retrieval ,business - Abstract
In the case of single-distance propagation-based phase-contrast X-ray computed tomography with synchrotron radiation, the conventional reconstruction pipeline includes an independent 2D phase retrieval filtering of each acquired projection prior to the actual reconstruction. In order to compensate for the limited height of the X-ray beam or the small sensitive area of most modern X-ray photon-counting detectors, it is quite common to image large objects with a multi-stage approach, i.e. several acquisitions at different vertical positions of the sample. In this context, the conventional reconstruction pipeline may introduce artifacts at the margins of each vertical stage. This article presents a modified computational protocol where a post-reconstruction 3D volume phase retrieval is applied. By comparing the conventional 2D and the proposed 3D reconstructions of a large mastectomy specimen (9 cm in diameter and 3 cm in height), it is here shown that the 3D approach compensates for the multi-stage artifacts, it avoids refined projection stitching, and the image quality in terms of spatial resolution, contrast and contrast-to-noise ratio is preserved.
- Published
- 2019
- Full Text
- View/download PDF