Christol, G., Assis, M, Boukraa, S., Hassani, S., van Hoeij, M., Maillard, J.M., Mccoy, B, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Saâd Dahlab Blida 1 (UB1), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Department of Mathematics [Tallahasee], Florida State University [Tallahassee] (FSU), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université de Saâd Dahlab [Blida] (USDB ), and Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
We give the exact expressions of the partial susceptibilities $\chi^{(3)}_d$ and $\chi^{(4)}_d$ for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, $_3F_2([1/3,2/3,3/2],\, [1,1];\, z)$ and $_4F_3([1/2,1/2,1/2,1/2],\, [1,1,1]; \, z)$ hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for $\chi^{(3)}_d$ and $\chi^{(4)}_d$. We also give new results for $\chi^{(5)}_d$. We see in particular, the emergence of a remarkable order-six operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the $n$-fold integrals of the Ising model are not only "Derived from Geometry" (globally nilpotent), but actually correspond to "Special Geometry" (homomorphic to their formal adjoint). This raises the question of seeing if these "special geometry" Ising-operators, are "special" ones, reducing, in fact systematically, to (selected, k-balanced, ...) $_{q+1}F_q$ hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations., Comment: 35 pages