1. Self-powered topological insulator Bi2Te3/Ge heterojunction photodetector driven by long-lived excitons transfer
- Author
-
Qin Yin, Guoxiang Si, Jiao Li, Sartaj Wali, Junfeng Ren, Jiatian Guo, and Hongbin Zhang
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Bioengineering ,General Chemistry ,Electrical and Electronic Engineering - Abstract
Due to the wide spectral absorption and ultrafast electron dynamical response under optical excitation, topological insulator (TI) was proposed to have appealing application in next-generation photonic and optoelectronic devices. Whereas, the bandgap-free speciality of Dirac surface states usually leads to a quick relaxation of photoexcited carriers, making the transient excitons difficult to manipulate in isolated TIs. Growth of TI Bi2Te3/Ge heterostructures can promote the specific lifetime and quantity of long-lived excitons, offering the possibility of designing original near-infrared optoelectronic devices, however, the construction of TI Bi2Te3/Ge heterostructures has yet to be investigated. Herein, the high-quality Bi2Te3/Ge heterojunction with clear interface was prepared by physical vapor deposition strategy. A significant photoluminescence quenching behaviour was observed by experiments, which was attributed to the spontaneous excitation transfer of electrons at heterointerface via theoretical analysis. Then, a self-powered heterostructure photodetector was fabricated, which demonstrated a maximal detectivity of 1.3 × 1011 Jones, an optical responsivity of 0.97 A W−1, and ultrafast photoresponse speed (12.1 μs) under 1064 nm light illumination. This study offers a fundamental understanding of the spontaneous interfacial exciton transfer of TI-based heterostructures, and the as-fabricated photodetectors with excellent performance provided an important step to meet the increasing demand for novel optoelectronic applications in the future.
- Published
- 2022
- Full Text
- View/download PDF