1. Fertile Arabidopsis cyp704b1 mutant, defective in sporopollenin biosynthesis, has a normal pollen coat and lipidic organelles in the tapetum
- Author
-
Noriko Nagata, Keiko Kobayashi, Daisaku Ohta, Kae Akita, and Masashi Suzuki
- Subjects
0106 biological sciences ,0303 health sciences ,Tapetum ,biology ,Mutant ,food and beverages ,Plant Science ,biology.organism_classification ,medicine.disease_cause ,Pollen coat ,01 natural sciences ,Phenotype ,Cell biology ,03 medical and health sciences ,Sporopollenin ,Arabidopsis ,Pollen ,Organelle ,otorhinolaryngologic diseases ,medicine ,Agronomy and Crop Science ,030304 developmental biology ,010606 plant biology & botany ,Biotechnology - Abstract
The exine acts as a protectant of the pollen from environmental stresses, and the pollen coat plays an important role in the attachment and recognition of the pollen to the stigma. The pollen coat is made of lipidic organelles in the tapetum. The pollen coat is necessary for fertility, as pollen coat-less mutants, such as those deficient in sterol biosynthesis, show severe male sterility. In contrast, the exine is made of sporopollenin precursors that are biosynthesized in the tapetum. Some mutants involved in sporopollenin biosynthesis lose the exine but show the fertile phenotype. One of these mutants, cyp704b1, was reported to lose not only the exine but also the pollen coat. To identify the cause of the fertile phenotype of the cyp704b1 mutant, the detailed structures of the tapetum tissue and pollen surface in the mutant were analyzed. As a result, the cyp704b1 mutant completely lost the normal exine but had high-electron-density granules localized where the exine should be present. Furthermore, normal lipidic organelles in the tapetum and pollen coat embedded between high-electron-density granules on the pollen surface were observed, unlike in a previous report, and the pollen coat was attached to the stigma. Therefore, the pollen coat is necessary for fertility, and the structure that functions like the exine, such as high-electron-density granules, on the pollen surface may play important roles in retaining the pollen coat in the cyp704b1 mutant.
- Published
- 2021
- Full Text
- View/download PDF