1. A Chatbot (Juno) Prototype to Deploy a Behavioral Activation Intervention to Pregnant Women: Qualitative Evaluation Using a Multiple Case Study
- Author
-
Elisa Mancinelli, Simone Magnolini, Silvia Gabrielli, and Silvia Salcuni
- Subjects
Medicine - Abstract
BackgroundDespite the increasing focus on perinatal care, preventive digital interventions are still scarce. Furthermore, the literature suggests that the design and development of these interventions are mainly conducted through a top-down approach that limitedly accounts for direct end user perspectives. ObjectiveBuilding from a previous co-design study, this study aimed to qualitatively evaluate pregnant women’s experiences with a chatbot (Juno) prototype designed to deploy a preventive behavioral activation intervention. MethodsUsing a multiple–case study design, the research aims to uncover similarities and differences in participants’ perceptions of the chatbot while also exploring women’s desires for improvement and technological advancements in chatbot-based interventions in perinatal mental health. Five pregnant women interacted weekly with the chatbot, operationalized in Telegram, following a 6-week intervention. Self-report questionnaires were administered at baseline and postintervention time points. About 10-14 days after concluding interactions with Juno, women participated in a semistructured interview focused on (1) their personal experience with Juno, (2) user experience and user engagement, and (3) their opinions on future technological advancements. Interview transcripts, comprising 15 questions, were qualitatively evaluated and compared. Finally, a text-mining analysis of transcripts was performed. ResultsSimilarities and differences have emerged regarding women’s experiences with Juno, appreciating its esthetic but highlighting technical issues and desiring clearer guidance. They found the content useful and pertinent to pregnancy but differed on when they deemed it most helpful. Women expressed interest in receiving increasingly personalized responses and in future integration with existing health care systems for better support. Accordingly, they generally viewed Juno as an effective momentary support but emphasized the need for human interaction in mental health care, particularly if increasingly personalized. Further concerns included overreliance on chatbots when seeking psychological support and the importance of clearly educating users on the chatbot’s limitations. ConclusionsOverall, the results highlighted both the positive aspects and the shortcomings of the chatbot-based intervention, providing insight into its refinement and future developments. However, women stressed the need to balance technological support with human interactions, particularly when the intervention involves beyond preventive mental health context, to favor a greater and more reliable monitoring.
- Published
- 2024
- Full Text
- View/download PDF