1. Fine structural features and antioxidant capacity of ferulated arabinoxylans extracted from nixtamalized maize bran.
- Author
-
Marquez-Escalante JA, Carvajal-Millan E, Martínez-López AL, Martínez-Robinson KG, Campa-Mada AC, and Rascon-Chu A
- Subjects
- Zea mays chemistry, Xylose, Arabinose, Polysaccharides chemistry, Xylans chemistry, Antioxidants
- Abstract
Background: The nixtamalization process improves the nutritional and technological properties of maize. This process generates nixtamalized maize bran as a by-product, which is a source of arabinoxylans (AX). AX are polysaccharides constituted of a xylose backbone with mono- or di-arabinose substitutions, which can be ester-linked to ferulic acid (FA). The present study investigated the fine structural features and antioxidant capacity (AC) of nixtamalized maize bran arabinoxylans (MBAX) to comprehend the structure-radical scavenging capacity relationship in this polysaccharide deeply., Results: MBAX presented a molecular weight, intrinsic viscosity, and hydrodynamic radius of 674 kDa, 1.8 dL g
-1 , and 24.6 nm, respectively. The arabinose-to-xylose ratio (A/X) and FA content were 0.74 and 0.25 g kg-1 polysaccharide, respectively. MBAX contained dimers (di-FA) and trimer (tri-FA) of FA (0.14 and 0.07 g kg-1 polysaccharide, respectively). The main di-FA isomer was the 8-5' structure (80%). Fourier transform infrared spectroscopy confirmed MBAX molecular identity, and the second derivate of the spectral data revealed a band at 958 cm-1 related to the presence of arabinose disubstitution.1 H-Nuclear magnetic resonance spectroscopy showed mono- and di-arabinose substitution in the xylan backbone with more monosubstituted residues. MBAX registered an AC of 25 and 20 μmol Trolox equivalents g-1 polysaccharide despite a low FA content, using ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (1,1-diphenyl-2-picrylhydrazyl) methods, respectively., Conclusion: AC in MBAX could be related to the high A/X ratio (mainly monosubstitution) and the high 8-5' di-FA proportion in this polysaccharide. © 2023 Society of Chemical Industry., (© 2023 Society of Chemical Industry.)- Published
- 2023
- Full Text
- View/download PDF