1. Myocardial Mechanics in a Rat Model with Banding and Debanding of the Ascending Aorta
- Author
-
Sung-Ho Her, Hyun-Duck Choi, Jongho Lee, Ki Cheol Park, Keum-Jin Yang, Eun Joo Cho, Mahn-Won Park, Chan Joon Kim, Jung Sun Cho, Gyung-Min Park, and Kyung-Hwa Lee
- Subjects
Pressure overload ,medicine.medical_specialty ,business.industry ,Aortic constriction ,Left ventricular hypertrophy ,Histology ,medicine.disease ,Aortic banding ,Fibrosis ,medicine.artery ,Internal medicine ,Ascending aorta ,Cardiology ,Medicine ,Original Article ,Radiology, Nuclear Medicine and imaging ,Myocardial fibrosis ,Tibia ,Cardiology and Cardiovascular Medicine ,business ,Debanding - Abstract
Background Aortic banding and debanding models have provided useful information on the development and regression of left ventricular hypertrophy (LVH). In this animal study, we aimed to evaluate left ventricular (LV) deformation related to the development and regression of LVH. Methods Minimally invasive ascending aorta banding was performed in rats (10 Sprague Dawley rats, 7 weeks). Ten rats underwent a sham operation. Thirty-five days later, the band was removed. Echocardiographic and histopathologic analysis was assessed at pre-banding, 35 days of banding and 14 days of debanding. Results Banding of the ascending aorta created an expected increase in the aortic velocity and gradient, which normalized with the debanding procedure. Pressure overload resulted in a robust hypertrophic response as assessed by gross and microscopic histology, transthoracic echocardiography [heart weight/tibia length (g/m); 21.0 ± 0.8 vs. 33.2 ± 2.0 vs. 26.6 ± 2.8, p < 0.001]. The circumferential (CS) and radial strains were not different between the groups. However, there were significant differences in the degree of fibrosis according to the banding status (fibrosis; 0.10 ± 0.20% vs. 5.26 ± 3.12% vs. 4.03 ± 3.93%, p = 0.003), and global CS showed a significant correlation with the degree of myocardial fibrosis in this animal model (r = 0.688, p = 0.028). Conclusion In this animal study, simulating a severe LV pressure overload state, a significant increase in the LV mass index did not result in a significant reduction in the LV mechanical parameters. The degree of LV fibrosis, which developed with pressure overload, was significantly related to the magnitude of left ventricular mechanics.
- Published
- 2014
- Full Text
- View/download PDF