1. Hot-wall MOCVD for advanced GaN HEMT structures and improved p-type doping
- Author
-
Papamichail, Alexis and Papamichail, Alexis
- Abstract
The transition to energy efficient smart grid and wireless communication with improved capacity require the development and optimization of next generation semiconductor technologies and electronic device components. Indium nitride (InN), gallium nitride (GaN) and aluminum nitride (AlN) compounds and their alloys are direct bandgap semiconductors with bandgap energies ranging from 0.7 to 6.0 eV, facilitating their utilization in optoelectronics and photonics. The GaN-based blue light-emitting diodes (LEDs) have enabled efficient and energy saving lighting, for which the Nobel Prize in Physics 2014 was awarded. GaN and AlN have high critical electric fields, high saturation carrier velocities and high thermal conductivities, which make them promising candidates for replacing silicon (Si) in next-generation power devices. The polarization-induced two-dimensional electron gas (2DEG), formed at the interface of AlGaN and GaN has enabled GaN-based high electron mobility transistors (HEMTs). These devices are suitable for high-power (HP) switching, power amplification and high-frequency (HF) applications in the millimeter-wave range up to THz frequencies. As such, HEMTs are suitable for next-generation 5G and 6G communication systems, radars, satellites, and a plethora of other related applications. Despite the immense efforts in the field, several material related issues still hinder the full exploitation of the unique properties of GaN-based semiconductors in HF and HP electronic applications. These limitations and challenges are related among others to: i) poor efficiency of p-type doping in GaN, ii) lack of linearity in AlGaN/GaN HEMTs used in low-noise RF amplifiers and, iii) MOCVD growth related difficulties in achieving ultra-thin and high Alcontent AlGaN barrier layers with compositionally sharp Al profiles in AlGaN/GaN HEMTs for HF applications. In this PhD thesis, we address the abovementioned issues by exploiting the hot-wall MOCVD combined with extensive mater, Funding agencies: The Swedish Governmental Agency for Innovation Systems (VINNOVA) under the Competence Center Program Grant No. 2016-05190 and 2022-03139, Linköping University, Chalmers University of Technology, Ericsson, Epiluvac, FMV, Gotmic, Hexagem, Hitachi Energy, On Semiconductor, Region Skåne, Saab, SweGaN, UMS, and Volvo cars. We further acknowledge support from the Swedish Research Council VR under Award No. 2016-00889 and 2022-04812, Swedish Foundation for Strategic Research under Grants No. RIF14-055 and No. EM16-0024, and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University, Faculty Grant SFO Mat LiU No. 2009-00971. The KAW Foundation is also acknowledged for support of the Linköping Electron Microscopy Laboratory.
- Published
- 2023
- Full Text
- View/download PDF