12 results on '"Wahlström, Magnus"'
Search Results
2. Sparsification of SAT and CSP problems via tractable extensions
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Published
- 2020
- Full Text
- View/download PDF
3. Sparsification of SAT and CSP problems via tractable extensions
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Unlike polynomial kernelization in general, for which many non-trivial results and methods exist, only few non-trival algorithms are known for polynomial-time sparsification. Furthermore, excepting problems on restricted inputs (such as graph problems on planar graphs), most such results rely upon encoding the instance as a system of bounded-degree polynomial equations. In particular, for satisfiability (SAT) problems with a fixed constraint language Γ, every previously known result is captured by this approach; for several such problems, this is known to be tight. In this work, we investigate the limits of this approach—in particular, does it really cover all cases of non-trivial polynomial-time sparsification? We generalize the method using tools from the algebraic approach to constraint satisfaction problems (CSP). Every constraint that can be modelled via a system of linear equations, over some finite field F, also admits a finite domain extension to a tractable CSP with a Maltsev polymorphism; using known algorithms for Maltsev languages, we can show that every problem of the latter type admits a “basis” of O(n) constraints, which implies a linear sparsification for the original problem. This generalization appears to be strict; other special cases include constraints modelled via group equations over some finite group G. For sparsifications of polynomial but super-linear size, we consider two extensions of this. Most directly, we can capture systems of bounded-degree polynomial equations in a “lift-and-project” manner, by finding Maltsev extensions for constraints over c-tuples of variables, for a basis with O(nc) constraints. Additionally, we may use extensions with k-edge polymorphisms instead of requiring a Maltsev polymorphism. We also investigate characterizations of when such extensions exist. We give an infinite sequence of partial polymorphisms φ1, φ2, …which characterizes whether a language Γ has a Maltsev extension (of
- Published
- 2020
- Full Text
- View/download PDF
4. Sparsification of SAT and CSP problems via tractable extensions
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Unlike polynomial kernelization in general, for which many non-trivial results and methods exist, only few non-trival algorithms are known for polynomial-time sparsification. Furthermore, excepting problems on restricted inputs (such as graph problems on planar graphs), most such results rely upon encoding the instance as a system of bounded-degree polynomial equations. In particular, for satisfiability (SAT) problems with a fixed constraint language Γ, every previously known result is captured by this approach; for several such problems, this is known to be tight. In this work, we investigate the limits of this approach—in particular, does it really cover all cases of non-trivial polynomial-time sparsification? We generalize the method using tools from the algebraic approach to constraint satisfaction problems (CSP). Every constraint that can be modelled via a system of linear equations, over some finite field F, also admits a finite domain extension to a tractable CSP with a Maltsev polymorphism; using known algorithms for Maltsev languages, we can show that every problem of the latter type admits a “basis” of O(n) constraints, which implies a linear sparsification for the original problem. This generalization appears to be strict; other special cases include constraints modelled via group equations over some finite group G. For sparsifications of polynomial but super-linear size, we consider two extensions of this. Most directly, we can capture systems of bounded-degree polynomial equations in a “lift-and-project” manner, by finding Maltsev extensions for constraints over c-tuples of variables, for a basis with O(nc) constraints. Additionally, we may use extensions with k-edge polymorphisms instead of requiring a Maltsev polymorphism. We also investigate characterizations of when such extensions exist. We give an infinite sequence of partial polymorphisms φ1, φ2, …which characterizes whether a language Γ has a Maltsev extension (of
- Published
- 2020
- Full Text
- View/download PDF
5. Sparsification of SAT and CSP problems via tractable extensions
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Published
- 2020
- Full Text
- View/download PDF
6. The power of primitive positive definitions with polynomially many variables
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions.
- Published
- 2017
- Full Text
- View/download PDF
7. The power of primitive positive definitions with polynomially many variables
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions.
- Published
- 2017
- Full Text
- View/download PDF
8. The power of primitive positive definitions with polynomially many variables
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions.
- Published
- 2017
- Full Text
- View/download PDF
9. The power of primitive positive definitions with polynomially many variables
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions.
- Published
- 2017
- Full Text
- View/download PDF
10. The power of primitive positive definitions with polynomially many variables
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existential quantification, quantifier-free primitive positive definitions (q.f.p.p.) definitions. Sets of relations closed under p.p. definitions are known as co-clones and sets of relations closed under q.f.p.p. definitions as weak partial co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial clones is of uncountably infinite cardinality even for the Boolean domain. Hence, it is reasonable to consider the expressiveness of p.p. definitions where only a small number of existentially quantified variables are allowed. In this article, we consider p.p. definitions allowing only polynomially many existentially quantified variables, and say that a co-clone closed under such definitions is polynomially closed, and otherwise superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the corresponding clone contains a k-ary near-unanimity operation for k amp;gt;= 3, then the co-clone is polynomially closed, and if the clone does not contain a k-edge operation for any k amp;gt;= 2, then the co-clone is superpolynomially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed co-clones. We prove that if Gamma is a finite set of relations over an arbitrary finite domain such that the clone corresponding to Gamma is essentially unary, then the strong partial clone corresponding to Gamma is of infinite order and cannot be generated by a finite set of partial functions.
- Published
- 2017
- Full Text
- View/download PDF
11. Bounded Bases of Strong Partial Clones
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Zanuttini, Bruno, Lagerkvist, Victor, Wahlström, Magnus, and Zanuttini, Bruno
- Abstract
Partial clone theory has successfully been applied to study the complexity of the constraint satisfaction problem parameterized by a set of relations (CSP(G)). Lagerkvist & Wahlstroï¿œm (ISMVL 2014) however shows that the partial polymorphisms of G (?P?I(G)) cannot be finitely generated for finite, Boolean G if CSP(G) is NP-hard (assuming P?NP). In this paper we consider stronger closure operators than functional composition which can generate ?P?I(G) from a finite set of partial functions, a bounded base. Determining bounded bases for finite languages provides a complete characterization of their partial polymorphisms and we provide such bases for k-SAT and 1-in-k-SAT.
- Published
- 2015
- Full Text
- View/download PDF
12. Polynomially Closed Co-clones
- Author
-
Lagerkvist, Victor, Wahlström, Magnus, Lagerkvist, Victor, and Wahlström, Magnus
- Abstract
Two well-studied closure operators for relations are based on primitive positive (p.p.) definitions and quantifier free p.p. definitions. The latter do however have limited expressiveness and the corresponding lattice of strong partial clones is uncountable. We consider implementations allowing polynomially many existentially quantified variables and obtain a dichotomy for co-clones where such implementations are enough to implement any relation and prove (1) that all remaining coclones contain relations requiring a superpolynomial amount of quantified variables and (2) that the strong partial clones corresponding to two of these co-clones are of infinite order whenever the set of invariant relations can be finitely generated.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.