4 results on '"Danzer SC"'
Search Results
2. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.
- Author
-
Jiang Y, Tong D, Hofacer RD, Loepke AW, Lian Q, and Danzer SC
- Subjects
- Animals, Apoptosis drug effects, Cell Death drug effects, Disease Models, Animal, Female, Male, Mice, Mice, Inbred C57BL, Time, Anesthetics, Inhalation pharmacology, Cell Proliferation drug effects, Hippocampus drug effects, Isoflurane pharmacology, Stem Cells drug effects
- Abstract
Background: Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures., Methods: To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice)., Results: Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment., Conclusions: These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.
- Published
- 2016
- Full Text
- View/download PDF
3. Characterization and quantification of isoflurane-induced developmental apoptotic cell death in mouse cerebral cortex.
- Author
-
Istaphanous GK, Ward CG, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, and Loepke AW
- Subjects
- Animals, Animals, Newborn, Caspase 3 metabolism, Cerebral Cortex cytology, Cerebral Cortex growth & development, Enzyme-Linked Immunosorbent Assay, Female, Glial Fibrillary Acidic Protein metabolism, Glutamate Decarboxylase metabolism, Immunohistochemistry, Interneurons drug effects, Male, Mice, Mice, Inbred C57BL, Neurons metabolism, Phenotype, S100 Proteins metabolism, gamma-Aminobutyric Acid physiology, Anesthetics, Inhalation toxicity, Apoptosis drug effects, Cerebral Cortex drug effects, Isoflurane toxicity, Neurons drug effects
- Abstract
Background: Accumulating evidence indicates that isoflurane and other, similarly acting anesthetics exert neurotoxic effects in neonatal animals. However, neither the identity of dying cortical cells nor the extent of cortical cell loss has been sufficiently characterized. We conducted the present study to immunohistochemically identify the dying cells and to quantify the fraction of cells undergoing apoptotic death in neonatal mouse cortex, a substantially affected brain region., Methods: Seven-day-old littermates (n = 36) were randomly assigned to a 6-hour exposure to either 1.5% isoflurane or fasting in room air. Animals were euthanized immediately after exposure and brain sections were double-stained for activated caspase 3 and one of the following cellular markers: Neuronal Nuclei (NeuN) for neurons, glutamic acid decarboxylase (GAD)65 and GAD67 for GABAergic cells, as well as GFAP (glial fibrillary acidic protein) and S100β for astrocytes., Results: In 7-day-old mice, isoflurane exposure led to widespread increases in apoptotic cell death relative to controls, as measured by activated caspase 3 immunolabeling. Confocal analyses of caspase 3-labeled cells in cortical layers II and III revealed that the overwhelming majority of cells were postmitotic neurons, but some were astrocytes. We then quantified isoflurane-induced neuronal apoptosis in visual cortex, an area of substantial injury. In unanesthetized control animals, 0.08% ± 0.001% of NeuN-positive layer II/III cortical neurons were immunoreactive for caspase 3. By contrast, the rate of apoptotic NeuN-positive neurons increased at least 11-fold (lower end of the 95% confidence interval [CI]) to 2.0% ± 0.004% of neurons immediately after isoflurane exposure (P = 0.0017 isoflurane versus control). In isoflurane-treated animals, 2.9% ± 0.02% of all caspase 3-positive neurons in superficial cortex also coexpressed GAD67, indicating that inhibitory neurons may also be affected. Analysis of GABAergic neurons, however, proved unexpectedly complex. In addition to inducing apoptosis among some GAD67-immunoreactive neurons, anesthesia also coincided with a dramatic decrease in both GAD67 (0.98 vs 1.84 ng/mg protein, P < 0.00001, anesthesia versus control) and GAD65 (2.25 ± 0.74 vs 23.03 ± 8.47 ng/mg protein, P = 0.0008, anesthesia versus control) protein levels., Conclusions: Prolonged exposure to isoflurane increased neuronal apoptotic cell death in 7-day-old mice, eliminating approximately 2% of cortical neurons, of which some were identified as GABAergic interneurons. Moreover, isoflurane exposure interfered with the inhibitory nervous system by downregulating the central enzymes GAD65 and GAD67. Conversely, at this age, only a minority of degenerating cells were identified as astrocytes. The clinical relevance of these findings in animals remains to be determined.
- Published
- 2013
- Full Text
- View/download PDF
4. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory.
- Author
-
Loepke AW, Istaphanous GK, McAuliffe JJ 3rd, Miles L, Hughes EA, McCann JC, Harlow KE, Kurth CD, Williams MT, Vorhees CV, and Danzer SC
- Subjects
- Animals, Animals, Newborn, Blood Glucose drug effects, Brain pathology, Brain physiopathology, Carbon Dioxide blood, Cell Survival drug effects, Female, Glucose administration & dosage, Hydrogen-Ion Concentration, Lactic Acid blood, Male, Mice, Mice, Inbred C57BL, Motor Activity drug effects, Nerve Degeneration pathology, Nerve Degeneration physiopathology, Neurons drug effects, Neurons pathology, Oxygen blood, Time Factors, Anesthetics, Inhalation toxicity, Apoptosis drug effects, Behavior, Animal drug effects, Brain drug effects, Isoflurane toxicity, Maze Learning drug effects, Memory drug effects, Nerve Degeneration chemically induced
- Abstract
Background: Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice., Methods: Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials., Results: Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco(2), lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss., Conclusions: Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions in adult neuronal density or deficits in spontaneous locomotion, spatial learning, or memory function were observed.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.