1. cAMP-Inhibits Cytoplasmic Phospholipase A2 and Protects Neurons against Amyloid-β-Induced Synapse Damage.
- Author
-
Bate, Clive and Williams, Alun
- Subjects
- *
CYCLIC adenylic acid , *PHOSPHOLIPASES , *NEUROPROTECTIVE agents - Abstract
A key event in Alzheimer's disease (AD) is the production of amyloid-β (Aβ) peptides and the loss of synapses. In cultured neurons Aβ triggered synapse damage as measured by the loss of synaptic proteins. α-synuclein (αSN), aggregates of which accumulate in Parkinson's disease, also caused synapse damage. Synapse damage was associated with activation of cytoplasmic phospholipase A2 (cPLA2), an enzyme that regulates synapse function and structure, and the production of prostaglandin (PG) E2. In synaptosomes PGE2 increased concentrations of cyclic adenosine monophosphate (cAMP) which suppressed the activation of cPLA2 demonstrating an inhibitory feedback system. Thus, Aβ/αSN-induced activated cPLA2 produces PGE2 which increases cAMP which in turn suppresses cPLA2 and, hence, its own production. Neurons pre-treated with pentoxifylline and caffeine (broad spectrum phosphodiesterase (PDE) inhibitors) or the PDE4 specific inhibitor rolipram significantly increased the Aβ/αSN-induced increase in cAMP and consequently protected neurons against synapse damage. The addition of cAMP analogues also inhibited cPLA2 and protected neurons against synapse damage. These results suggest that drugs that inhibit Aβ-induced activation of cPLA2 and cross the blood--brain barrier may reduce synapse damage in AD. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF