1. Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles.
- Author
-
Jelemenský M, Kovácsházi C, Ferenczyová K, Hofbauerová M, Kiss B, Pállinger É, Kittel Á, Sayour VN, Görbe A, Pelyhe C, Hambalkó S, Kindernay L, Barančík M, Ferdinandy P, Barteková M, and Giricz Z
- Subjects
- Animals, Animals, Newborn, Cell Line, Cell Movement physiology, Cell-Derived Microparticles metabolism, Cell-Derived Microparticles ultrastructure, Cells, Cultured, Culture Media, Conditioned pharmacology, Fibroblasts cytology, Fibroblasts physiology, Human Umbilical Vein Endothelial Cells cytology, Human Umbilical Vein Endothelial Cells drug effects, Human Umbilical Vein Endothelial Cells physiology, Humans, Male, Microscopy, Electron, Transmission, Neovascularization, Physiologic drug effects, Rats, Wistar, Rats, Cell Movement drug effects, Cell-Derived Microparticles physiology, Fibroblasts drug effects, Helium pharmacology, Myocardium cytology
- Abstract
Helium inhalation induces cardioprotection against ischemia/reperfusion injury, the cellular mechanism of which remains not fully elucidated. Extracellular vesicles (EVs) are cell-derived, nano-sized membrane vesicles which play a role in cardioprotective mechanisms, but their function in helium conditioning (HeC) has not been studied so far. We hypothesized that HeC induces fibroblast-mediated cardioprotection via EVs. We isolated neonatal rat cardiac fibroblasts (NRCFs) and exposed them to glucose deprivation and HeC rendered by four cycles of 95% helium + 5% CO
2 for 1 h, followed by 1 h under normoxic condition. After 40 h of HeC, NRCF activation was analyzed with a Western blot (WB) and migration assay. From the cell supernatant, medium extracellular vesicles (mEVs) were isolated with differential centrifugation and analyzed with WB and nanoparticle tracking analysis. The supernatant from HeC-treated NRCFs was transferred to naïve NRCFs or immortalized human umbilical vein endothelial cells (HUVEC-TERT2), and a migration and angiogenesis assay was performed. We found that HeC accelerated the migration of NRCFs and did not increase the expression of fibroblast activation markers. HeC tended to decrease mEV secretion of NRCFs, but the supernatant of HeC or the control NRCFs did not accelerate the migration of naïve NRCFs or affect the angiogenic potential of HUVEC-TERT2. In conclusion, HeC may contribute to cardioprotection by increasing fibroblast migration but not by releasing protective mEVs or soluble factors from cardiac fibroblasts.- Published
- 2021
- Full Text
- View/download PDF