1. Enhancing the LCO 18,650 Battery Charging/Discharging Using Temperature and Electrical Based Model.
- Author
-
Al-Refai, Abdullah, Alkhateeb, Abedalrhman, and Dalala, Zakariya M.
- Subjects
OPEN-circuit voltage ,PARAMETER identification ,ARTIFICIAL intelligence ,CELL phones ,LITHIUM-ion batteries ,STORAGE batteries ,ELECTRIC batteries - Abstract
Lithium-ion batteries are commonly used in electric vehicles, embedded systems, and portable devices, including laptops and mobile phones. Electrochemical models are widely used in battery diagnostics and charging/discharging control, considering their high extractability and physical interpretability. Many artificial intelligence charging algorithms also use electrochemical models for to enhance operation efficiency and maintain a higher state of health. However, the parameter identification of electrochemical models is challenging due to the complicated model structure and the high count of physical parameters to be considered. In this manuscript, a comprehensive electrochemical lithium-ion battery model is proposed for the charging and discharging processes. The proposed model accounts for all dynamic characteristics of the battery, including the cell open-circuit voltage, cell voltage, internal battery impedance, charging/discharging current, and temperature. The key novelty of the proposed model is the use of simulated open-circuit voltage and simulated changes in entropy data instead of experimental data to provide battery voltage and temperature profiles during charging and discharging cycles in the development of the final model. An available experimental dataset at NASA for an LCO 18,650 battery was utilized to test the proposed model. The mean absolute error for the simulated charging cell voltage and temperature values were 0.05 V and 0.3 °C, compared with 0.14 V and 0.65 °C for the discharging profile. The simulation results proved the effectiveness and accuracy of the proposed model, while simplicity was the key factor in developing the final model, as shown in the subsequent sections of the manuscript. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF