1. Numerical Assessment and Repair Method of Runway Pavement Damage Due to CBU Penetration and Blast Loading.
- Author
-
Han, Jaeduk, Kim, Sungil, and Hwang, Injae
- Subjects
BLAST effect ,CONCRETE pavements ,PAVEMENT testing ,PAVEMENTS ,REPAIRING ,TERMINAL velocity ,CRUSHED stone - Abstract
This paper addresses the protection capability of a runway pavement by executing a field blast test on an airfield pavement subjected to blast loading from a CBU (cluster bomb unit), and by confirming the numerical simulation of warhead penetration and the form of damage. The CBU's blast loading applies the BAP 100 of an air-to-ground munition in a similar scale. Penetration depth is calculated by a formula which incorporates the terminal speed of a free-falling cluster munition dispersed 20 km above the ground. According to the result of the calculation, the penetration depth by a cluster munition is 33 cm from the surface of the pavement. The field blast test was conducted based on this result. Furthermore, LS-DYNA software simulation was used to assess the condition of damage, determined by the depth of penetration and explosive pressure from a free-falling CBU landing on the airfield pavement from 20 km above the ground. The condition was ultimately used to verify the result of field testing and to confirm the scale of damage repair. The depth of explosion was 78 cm, from the surface to the crushed stone and sand layer below the pavement, and the diameter was 30 cm. The size of the crushed concrete that needed to be removed was an average diameter of 156 cm. The simulation result confirms that the diameter and depth of the crater are 67.6 cm and 67 cm, respectively, when the CBU is detonated under the same depth as the field testing, and the height of upheaval is 12 cm. The most appropriate method for repair, after a series of reviews, is to cut and remove a concrete slab 1.8 m × 1.8 m and cast the crushed stone layer disrupted from the explosion, followed by repairing the removed damaged concrete slab sections using rapid hardening concrete. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF