1. Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi 2.1 Eutectic High-Entropy Alloy.
- Author
-
Tian, Xue-Yao, Zhang, Hong-Liang, Nong, Zhi-Sheng, Cui, Xue, Gu, Ze-Hao, Liu, Teng, Li, Hong-Mei, and Arzikulov, Eshkuvat
- Subjects
HIGH-entropy alloys ,BRITTLE fractures ,MATERIAL plasticity ,CRACK propagation (Fracture mechanics) ,DUCTILE fractures ,MECHANICAL alloying - Abstract
In order to explore the effect of alloying on the microstructures and mechanical properties of AlCoCrFeNi
2.1 eutectic high-entropy alloys (EHEAs), 0.1, 0.2, and 0.3 at.% V, Mo, and B were added to the AlCoCrFeNi2.1 alloy in this work. The effects of the elements and contents on the phase composition, microstructures, mechanical properties, and fracture mechanism were investigated. The results showed that the crystal structures of the AlCoCrFeNi2.1 EHEAs remained unchanged, and the alloys were still composed of FCC and BCC structures, whose content varied with the addition of alloying elements. After alloying, the aggregation of Co, Cr, Al, and Ni elements remained unchanged, and the V and Mo were distributed in both dendritic and interdendritic phases. The tensile strengths of the alloys all exceeded 1000 MPa when the V and Mo elements were added, and the Mo0.2 alloy had the highest tensile strength, of 1346.3 MPa, and fracture elongation, of 24.6%. The alloys with the addition of V and Mo elements showed a mixed ductile and brittle fracture, while the B-containing alloy presented a cleavage fracture. The fracture mechanism of Mo0.2 alloy is mainly crack propagation in the BCC lamellae, and the FCC dendritic lamellae exhibit the characteristics of plastic deformation. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF