1. Potential of Calcium-Modified Biochar for Soil Nutrient and Carbon Sequestration in Citrus Orchards.
- Author
-
Bai, Yinnan, Huang, Rui, Li, Shu, Li, Xianliang, Fan, Qijun, Liu, Shengqiu, and Hu, Lening
- Subjects
CARBON sequestration ,CARBON emissions ,CARBON in soils ,CARBON cycle ,SOIL enzymology - Abstract
To examine the mechanisms of organic carbon transformation and sequestration by biochar in citrus orchard soil, a 100-day organic carbon mineralization test was conducted using citrus orchard soil from a 5-year-old forest. Calcium-modified citrus peel biochar (OBC-Ca) was applied at rates of 0%, 1%, 2%, and 4%. The results indicated that different percentages of OBC-Ca significantly influenced the mineralization processes in citrus orchards. Specifically, the cumulative mineralization of soil organic carbon was notably reduced by 8.68% and 17.00% with the application of 2% and 4% OBC-Ca, respectively, compared to the control group. Random forest analysis revealed that microbial biomass carbon (MBC), readily oxidizable carbon (ROC), and dissolved organic carbon (DOC) were critical indicators for predicting the cumulative mineralization of soil organic carbon. MBC and ROC were found to inhibit the cumulative mineralization, while DOC promoted it. As the proportion of OBC-Ca applications increased, MBC rose by 2.63% to 10.46%, ROC increased by 16.41% to 108.59%, and DOC increased by 0.48% to 11.67%. Correlation analysis demonstrated a significant negative correlation between the cumulative mineralization rate of soil organic carbon and soil enzyme activity, with soil sucrase content increasing significantly by 216.42% to 393.44% compared to the control. The application of calcium-modified biochar effectively reduces carbon dioxide emissions from citrus orchard soils, with a 4% application yielding the most favorable outcomes for enhancing soil carbon sinks, thereby positively impacting the carbon sequestration potential of citrus orchard soil. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF