1. Design and Implementation of a Ku-Band High-Precision Blackbody Calibration Target.
- Author
-
Liu, Jie, Sun, Zhenlin, Sun, Guangmin, Li, Yu, Cao, Tong, and Tang, Wenjie
- Subjects
PID controllers ,ARCHES ,CALIBRATION ,MANUFACTURING processes ,FINITE element method ,ELECTROMAGNETIC wave scattering ,MICROWAVE radiometers - Abstract
Microwave radiometers can be used in human tissue temperature measurement scenarios due to the advantages of non-destructive and non-contact temperature measurement. However, their accuracy often cannot meet the needs of practical applications. In this paper, a Ku-Band high-precision blackbody calibration target is designed to provide calibration for microwave radiometers and meet the requirements of a high temperature-measurement accuracy and high temperature-measurement resolution. From a practical application point of view, the blackbody calibration target needs to have the characteristics of high emissivity and high temperature uniformity. However, previous studies on blackbody calibration targets often focused on the scattering characteristics or temperature uniformity of the calibration target separately, and thus lack a comprehensive consideration of the two characteristics. In this paper, the electromagnetic scattering model and the temperature-distribution model of the calibration target are established through the multi-physical simulation combined with the Finite Element Method. Then, according to the simulation results of the two characteristic models, the structural parameters and composition of the coated cone array are continuously optimized. In addition, to achieve high-precision temperature control of the blackbody calibration target, this paper studies three PID controller parameter self-tuning algorithms, namely, BP-PID, PSO-PID and Fuzzy-PID for the optimal parameter tuning problem of traditional PID algorithms and determines the optimal temperature-control algorithm by comparing the performance of heating and cooling processes. Then, the blackbody calibration target is processed and manufactured. The arch test system is used to validate the reflectance of the calibration target, the emissivity is calculated indirectly, and the temperature-distribution uniformity of the temperature-control panel of the calibration target is tested by a multi-point distribution method. Finally, the uncertainty of the brightness temperature of the blackbody calibration target is analyzed. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF