1. VividWav2Lip: High-Fidelity Facial Animation Generation Based on Speech-Driven Lip Synchronization.
- Author
-
Liu, Li, Wang, Jinhui, Chen, Shijuan, and Li, Zongmei
- Subjects
VIRTUAL reality ,SYNCHRONIZATION ,LIPS - Abstract
Speech-driven lip synchronization is a crucial technology for generating realistic facial animations, with broad application prospects in virtual reality, education, training, and other fields. However, existing methods still face challenges in generating high-fidelity facial animations, particularly in addressing lip jitter and facial motion instability issues in continuous frame sequences. This study presents VividWav2Lip, an improved speech-driven lip synchronization model. Our model incorporates three key innovations: a cross-attention mechanism for enhanced audio-visual feature fusion, an optimized network structure with Squeeze-and-Excitation (SE) residual blocks, and the integration of the CodeFormer facial restoration network for post-processing. Extensive experiments were conducted on a diverse dataset comprising multiple languages and facial types. Quantitative evaluations demonstrate that VividWav2Lip outperforms the baseline Wav2Lip model by 5% in lip sync accuracy and image generation quality, with even more significant improvements over other mainstream methods. In subjective assessments, 85% of participants perceived VividWav2Lip-generated animations as more realistic compared to those produced by existing techniques. Additional experiments reveal our model's robust cross-lingual performance, maintaining consistent quality even for languages not included in the training set. This study not only advances the theoretical foundations of audio-driven lip synchronization but also offers a practical solution for high-fidelity, multilingual dynamic face generation, with potential applications spanning virtual assistants, video dubbing, and personalized content creation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF