1. Functional Grading of a Transversely Isotropic Hyperelastic Model with Applications in Modeling Tricuspid and Mitral Valve Transition Regions.
- Author
-
Roy R, Warren E Jr, Xu Y, Yow C, Madhurapantula RS, Orgel JPRO, and Lister K
- Subjects
- Animals, Biomechanical Phenomena, Chordae Tendineae physiology, Computer Simulation, Finite Element Analysis, Mitral Valve anatomy & histology, Models, Biological, Models, Cardiovascular, Models, Theoretical, Papillary Muscles physiology, Stress, Mechanical, Swine, Tricuspid Valve anatomy & histology, Mitral Valve physiology, Tricuspid Valve physiology, X-Ray Diffraction methods
- Abstract
Surgical simulators and injury-prediction human models require a combination of representative tissue geometry and accurate tissue material properties to predict realistic tool-tissue interaction forces and injury mechanisms, respectively. While biological tissues have been individually characterized, the transition regions between tissues have received limited research attention, potentially resulting in inaccuracies within simulations. In this work, an approach to characterize the transition regions in transversely isotropic (TI) soft tissues using functionally graded material (FGM) modeling is presented. The effect of nonlinearities and multi-regime nature of the TI model on the functional grading process is discussed. The proposed approach has been implemented to characterize the transition regions in the leaflet (LL), chordae tendinae (CT) and the papillary muscle (PM) of porcine tricuspid valve (TV) and mitral valve (MV). The FGM model is informed using high resolution morphological measurements of the collagen fiber orientation and tissue composition in the transition regions, and deformation characteristics predicted by the FGM model are numerically validated to experimental data using X-ray diffraction imaging. The results indicate feasibility of using the FGM approach in modeling soft-tissue transitions and has implications in improving physical representation of tissue deformation throughout the body using a scalable version of the proposed approach.
- Published
- 2020
- Full Text
- View/download PDF