1. A SMA-SVM-Based Prediction Model for the Tailings Discharge Volume After Tailings Dam Failure.
- Author
-
Liu, Gaolin, Zhao, Bing, Kong, Xiangyun, Xin, Yingming, Wang, Mingqiang, and Zhang, Yonggang
- Abstract
Tailings ponds can recycle water resources through the water recirculation system by clarifying and purifying the wastewater discharged from the mining production process. Due to factors such as flooding and heavy rainfall, once a tailings dams burst, the spread of heavy metals in the tailings causes underground and surface water pollution, endangering the lives and properties of people downstream. To effectively assess the potential impact of tailings dams bursting, many problems such as the difficulty of taking values in predicting the volume of silt penetration through empirical formulae, model testing, and numerical simulation need to be solved. In this study, 65 engineering cases were collected to develop a sample dataset containing dam height and storage capacity. The Support Vector Machine (SVM) algorithm was used to develop a nonlinear regression model for tailings discharge volume after tailings dam failure. In addition, the model penalty parameter C and kernel function g were optimized using the powerful global search capability of the Slime Mold Algorithm (SMA) to develop an SMA–SVM prediction model for tailings discharge volume. The results indicate that the volume of tailings discharged increases nonlinearly with increasing dam height and tailings storage capacity. The SMA-SVM model showed higher prediction accuracy compared to the predictions made by the Random Forest (RF), Radial Basis Function (RBF), and Least Squares SVM (LS-SVM) algorithms. The average absolute error in tailings discharge volume compared to actual values was 30,000 m
3 , with an average relative error of less than 25%. This is very close to practical engineering scenarios. The ability of the SMA-SVM optimization algorithm to produce predictions with minimal error relative to actual values was further confirmed by the combination of numerical simulations. In addition, the numerical simulations revealed the flow characteristics and inundation area of the discharged sediment during tailings dam failure, and the research results can provide reference for water resource protection and downstream safety prevention and control of tailings ponds. [ABSTRACT FROM AUTHOR]- Published
- 2025
- Full Text
- View/download PDF