1. Mix Design Optimization and Performance Evaluation of Ultra-Thin Wearing Courses Incorporating Ceramic Grains as Aggregate.
- Author
-
Li, Hanjun, Cheng, Ming, Xie, Xiaoguang, and Zhang, Tianxu
- Subjects
SKID resistance ,ROAD maintenance ,ROAD construction ,CALCIUM chloride ,ICE prevention & control ,TRAFFIC safety - Abstract
The impact of ice and snow in seasonally frozen regions has led to a significant decline in the flatness and skid resistance of highway pavements, creating severe traffic safety hazards. With economic development driving the transition from road construction to maintenance, this study proposes enhancing Ultra-Thin Wearing Course (UTWC) maintenance materials with anti-icing performance and snow-melting properties. The study first employed the Marshall mix design method to develop gradations for two common types of UTWC asphalt mixtures: the dense-graded GT-8 and the open-graded NovaChip
® Type-B. Using the volume substitution method, aggregates were replaced with equivalent volumes of ceramic grains. The optimal asphalt–aggregate ratios for the mixtures with varying ceramic grain contents were determined, and the influence of ceramic grains content on the asphalt–aggregate ratio was analyzed. The results indicate that the optimal asphalt–aggregate ratio increases with higher ceramic grains content. Subsequently, the high-temperature performance, low-temperature performance, and water stability of UTWC with varying ceramic grain contents were evaluated. Overall, NovaChip® gradation mixtures demonstrated superior road performance compared to GT-8 gradation mixtures. Moreover, an increase in ceramic grains content enhanced the high-temperature performance of UTWC but moderately reduced its low-temperature performance and water stability. Finally, the effects of different ceramic grain contents and snowmelt agent types on the anti-icing and snowmelt properties of UTWC were examined. The results revealed that higher ceramic grains content improved snowmelt effectiveness. Considering the road performance of the specimens, a ceramic grains content of 40% was recommended. Furthermore, calcium chloride (CaCl2 ) exhibited superior anti-icing performance compared to other snowmelt agents. [ABSTRACT FROM AUTHOR]- Published
- 2025
- Full Text
- View/download PDF