1. Strength and Microstructure of a Clayey Soil Stabilized with Natural Stone Industry Waste and Lime or Cement
- Author
-
José Luis Pastor, Jinchun Chai, Isidro Sánchez, Universidad de Alicante. Departamento de Ingeniería Civil, Ingeniería del Terreno y sus Estructuras (InTerEs), and Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
- Subjects
cement ,Fluid Flow and Transfer Processes ,Process Chemistry and Technology ,Industrial limestone waste ,By-product ,Cement ,General Engineering ,Lime ,Soil improvement ,Computer Science Applications ,soil improvement ,by-product ,industrial limestone waste ,General Materials Science ,lime ,Instrumentation - Abstract
Industrial waste generated by the natural stone industry when working with limestone and dolostone is mainly composed of calcium carbonate and calcium magnesium carbonate. This mineral composition makes soil stabilization a potential use of the natural stone industry waste. However, much research must be carried out to fully understand the aptitude of this waste for soil improvement. In this work, the strength and microstructure of a clayey soil stabilized using limestone powder waste and lime or cement were studied employing the following techniques: unconfined compressive strength tests, mercury intrusion porosimetry, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. Moreover, the effects of an aggressive environment were simulated using a sodium sulfate solution. Its effects were investigated from 7 days to 6 months. The results obtained show an increase in the unconfined compressive strength and a more compact structure for the samples with the industrial waste. Therefore, limestone powder waste from the natural stone industry can be used as a ternary element with lime and cement in soil stabilization. This work was supported by the Spanish Ministry of Universities under project number PRX21/00554 and the University of Alicante under project number GRE17-11 and developed within the framework of the project INNVA1/2021/8 of the Agencia Valenciana de Innovación.
- Published
- 2023
- Full Text
- View/download PDF