1. Improving Solar Radiation Forecasting Utilizing Data Augmentation Model Generative Adversarial Networks with Convolutional Support Vector Machine (GAN-CSVR)
- Author
-
Abbas Mohammed Assaf, Habibollah Haron, Haza Nuzly Abdull Hamed, Fuad A. Ghaleb, Mhassen Elnour Dalam, and Taiseer Abdalla Elfadil Eisa
- Subjects
convolutional neural network ,data augmentation ,generative adversarial network ,loss function ,support vector regression ,solar radiation data ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The accuracy of solar radiation forecasting depends greatly on the quantity and quality of input data. Although deep learning techniques have robust performance, especially when dealing with temporal and spatial features, they are not sufficient because they do not have enough data for training. Therefore, extending a similar climate dataset using an augmentation process will help overcome the issue. This paper proposed a generative adversarial network model with convolutional support vector regression, which is named (GAN-CSVR) that combines a GAN, convolutional neural network, and SVR to augment training data. The proposed model is trained utilizing the Multi-Objective loss function, which combines the mean squared error and binary cross-entropy. The original solar radiation dataset used in the testing is derived from three locations, and the results are evaluated using two scales, namely standard deviation (STD) and cumulative distribution function (CDF). The STD and the average error value of the CDF between the original dataset and the augmented dataset for these three locations are 0.0208, 0.1603, 0.9393, and 7.443981, 4.968554, and 1.495882, respectively. These values show very significant similarity in these two datasets for all locations. The forecasting accuracy findings show that the GAN-CSVR model produced augmented datasets that improved forecasting from 31.77% to 49.86% with respect to RMSE and MAE over the original datasets. This study revealed that the augmented dataset produced by the GAN-CSVR model is reliable because it provides sufficient data for training deep networks.
- Published
- 2023
- Full Text
- View/download PDF