1. Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce
- Author
-
Qian Zhao, Qingling Zhao, Jiabo Li, and Lanhua Yi
- Subjects
biopreservative ,fresh-cut lettuce ,vancomycin-resistant E. faecalis ,bacteriocin ,action mechanism ,Chemical technology ,TP1-1185 - Abstract
Fresh-cut vegetables are widely consumed, but there is no food preservative available to selectively inhibit vancomycin-resistant E. faecalis, which is a serious health menace in fresh-cut vegetables. To develop a promising food biopreservative, a bacteriocin, paracin wx7, was synthesized, showing selective inhibition against E. faecalis with MIC values of 4–8 μM. It showed instant bactericidal mode within 1 h at high concentrations with concomitant cell lysis against vancomycin-resistant E. faecalis. Its lethal effect was visualized in a dose-dependent manner by PI/SYTO9 staining observation. The results of an in vivo control experiment carried out on E. faecalis in fresh-cut lettuce showed that 99.97% of vancomycin-resistant E. faecalis were dead after 64 μM paracin wx7 treatment for 7 days without influencing total bacteria. Further, the action mechanism of paracin wx7 was investigated. Confocal microscopy showed that paracin wx7 was located both on the cell envelope and in cytoplasm. For the cell envelope, the studies of membrane permeability using SYTOX Green dyeing and DNA leakage revealed that paracin wx7 damaged the membrane integrity of E. faecalis. Simultaneously, it exhibited membrane depolarization after analysis using DiSC3(5). Damage to the cell envelope resulted in cell deformation observed by scanning electron microscopy. On entering the cytoplasm, the paracin wx7 induced the production of endogenous reactive oxygen species.
- Published
- 2024
- Full Text
- View/download PDF