1. Brain Tumor Segmentation from Optimal MRI Slices Using a Lightweight U-Net
- Author
-
Fernando Daniel Hernandez-Gutierrez, Eli Gabriel Avina-Bravo, Daniel F. Zambrano-Gutierrez, Oscar Almanza-Conejo, Mario Alberto Ibarra-Manzano, Jose Ruiz-Pinales, Emmanuel Ovalle-Magallanes, and Juan Gabriel Avina-Cervantes
- Subjects
convolutional neural networks ,semantic segmentation ,magnetic resonance image ,UNET ,Technology - Abstract
The timely detection and accurate localization of brain tumors is crucial in preserving people’s quality of life. Thankfully, intelligent computational systems have proven invaluable in addressing these challenges. In particular, the UNET model can extract essential pixel-level features to automatically identify the tumor’s location. However, known deep learning-based works usually directly feed the 3D volume into the model, which causes excessive computational complexity. This paper presents an approach to boost the UNET network, reducing computational workload while maintaining superior efficiency in locating brain tumors. This concept could benefit portable or embedded recognition systems with limited resources for operating in real time. This enhancement involves an automatic slice selection from the MRI T2 modality volumetric images containing the most relevant tumor information and implementing an adaptive learning rate to avoid local minima. Compared with the original model (7.7 M parameters), the proposed UNET model uses only 2 M parameters and was tested on the BraTS 2017, 2020, and 2021 datasets. Notably, the BraTS2021 dataset provided outstanding binary metric results: 0.7807 for the Intersection Over the Union (IoU), 0.860 for the Dice Similarity Coefficient (DSC), 0.656 for the Sensitivity, and 0.9964 for the Specificity compared to vanilla UNET.
- Published
- 2024
- Full Text
- View/download PDF