Philippe Page, Nicolas Naiditch, Nihel Adjali, Chantal Wood, Maarten Moens, Kevin Nivole, Amine Ounajim, Bénédicte Bouche, Romain David, Raphael Rigoard, Maxime Billot, Philippe Rigoard, Sandrine Baron, Manuel Roulaud, Bertille Lorgeoux, Yousri Slaoui, Pierre-Yves Louis, Lisa Goudman, prismatics (PRISMATICS), Centre hospitalier universitaire de Poitiers (CHU Poitiers), Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium, STUMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium, Procédés Alimentaires et Microbiologiques [Dijon] (PAM), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France, Dynamiques européennes (DynamE), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Service des Technologies de l’Information et de la Communication (STIC), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France, Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Supporting clinical sciences, Neurosurgery, Pain in Motion, Neuroprotection & Neuromodulation, Radiology, Vrije Universiteit Brussel (VUB), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
International audience; Persistent Pain after Spinal Surgery can be successfully addressed by Spinal Cord Stimulation (SCS). International guidelines strongly recommend that a lead trial be performed before any permanent implantation. Recent clinical data highlight some major limitations of this approach. First, it appears that patient outcomes, WITH OR WITHOUT lead trial, are similar. In contrast, during trialing, infection rate drops drastically within time and can compromise the therapy. Using composite pain assessment experience and previous research, we hypothesized that ma-chine learning models could be robust screening tools and reliable predictors of long-term SCS efficacy. We developed several algorithms including logistic regression, Regularized Logistic Regression (RLR), naive Bayes classifier, artificial neural networks, random forest and gradient boosted trees to test this hypothesis and to perform internal and external validations, the objec-tive being to confront model predictions with lead trial results using a 1-year composite out-come from 103 patients. While almost all models have demonstrated superiority on lead trial-ing, the RLR model appears to represent the best compromise between complexity and inter-pretability in prediction of SCS efficacy. These results underscore the need to use AI based-predictive medicine, as a synergistic mathematical approach, aimed at helping implanters to optimize their clinical choices on daily practice.