1. Transcriptomic Profiling Reveals That the Differentially Expressed PtNAC9 Transcription Factor Stimulates the Salicylic Acid Pathway to Enhance the Defense Response against Bursaphelenchus xylophilus in Pines
- Author
-
Tong-Yue Wen, Xin-Yu Wang, Xiao-Qin Wu, and Jian-Ren Ye
- Subjects
Bursaphelenchus xylophilus ,Pinus thunbergii ,NAC transcription factor ,hormone ,resistant ,Plant ecology ,QK900-989 - Abstract
Pinus, a conifer, dominates the world’s forest ecosystems. But it is seriously infected with pine wood nematode (PWN). Transcription factors (TFs) are key regulators in regulating plant resistance. However, the molecular mechanism of TFs remains thus far unresolved in P. thunbergii inoculated with Bursaphelenchus xylophilus. Here, we used RNA-seq technology to identify differentially expressed TFs in resistant and susceptible pines. The results show that a total of 186 differentially expressed transcription factors (DETFs), including 99 upregulated and 87 downregulated genes were identified. Gene ontology (GO) enrichment showed that the highly enriched differentially expressed TFs were responsible for secondary biosynthetic processes. According to KEGG pathway analysis, the differentially expressed TFs were related to chaperones and folding catalysts, phenylpropanoid biosynthesis, and protein processing in the endoplasmic reticulum. Many TFs such as NAC, LBD, MYB, bHLH, and WRKY were determined to be quite abundant in the DETFs. Moreover, the NAC transcription factor PtNAC9 was upregulated in PWN-resistant and susceptible P. thunbergii and especially distinctly upregulated in resistant pines. By purifying recombinant PtNAC9 protein in vitro, we found that overexpression of PtNAC9 at the early stage of B. xylophilus infection could reduce the degree of disease. We also demonstrated the content of salicylic acid (SA) and the related genes were increased in the PtNAC9 protein-treated plants. These results could be helpful in enhancing our understanding of the resistance mechanism underlying different resistant pine.
- Published
- 2024
- Full Text
- View/download PDF