1. The Roads to Haploid Embryogenesis
- Author
-
Kun Shen, Mengxue Qu, and Peng Zhao
- Subjects
parthenogenesis ,haploid induction ,single fertilization ,genome elimination ,crop breeding ,Botany ,QK1-989 - Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
- Published
- 2023
- Full Text
- View/download PDF