1. Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethyl)pyridine as Co-ligand
- Author
-
Stefan Suckert, Luzia S. Germann, Robert E. Dinnebier, Julia Werner, and Christian Näther
- Subjects
coordination compounds ,thiocyanate ,crystal structures ,thermal properties ,magnetic properties ,Rietveld refinement ,Crystallography ,QD901-999 - Abstract
Reaction of Co(NCS)2 with 4-(hydroxymethyl)pyridine (hmpy) leads to the formation of six new coordination compounds with the composition [Co(NCS)2(hmpy))4] (1), [Co(NCS)2(hmpy)4] × H2O (1-H2O), [Co(NCS)2(hmpy)2(EtOH)2] (2), [Co(NCS)2(hmpy)2(H2O)2] (3), [Co(NCS)2(hmpy)2]n∙4 H2O (4) and [Co(NCS)2(hmpy)2]n (5). They were characterized by single crystal and powder X-ray diffraction experiments, thermal and elemental analysis, IR and magnetic measurements. Compound 1 and 1-H2O form discrete complexes, in which the Co(II) cations are octahedrally coordinated by two terminal thiocyanato anions and four 4-(hydroxymethyl)pyridine ligands. Discrete complexes were also observed for compounds 2 and 3 where two of the hmpy ligands were substituted by solvent, either water (3) or ethanol (2). In contrast, in compounds 4 and 5, the Co(II) cations are linked into chains by bridging 4-(hydroxymethyl)pyridine ligands. The phase purity was checked with X-ray powder diffraction. Thermogravimetric measurements showed that compound 3 transforms into 5 upon heating, whereas the back transformation occurs upon resolvation. Magnetic measurements did not show any magnetic exchange via the hmpy ligand for compound 5.
- Published
- 2016
- Full Text
- View/download PDF