1. Label-Free Myoglobin Biosensor Based on Pure and Copper-Doped Titanium Dioxide Nanomaterials
- Author
-
Ahmad Umar, Mazharul Haque, Shafeeque G. Ansari, Hyung-Kee Seo, Ahmed A. Ibrahim, Mohsen A. M. Alhamami, Hassan Algadi, and Zubaida A. Ansari
- Subjects
Cu-doped TiO2 ,myoglobin ,acute myocardial infarction ,electrochemical biosensor ,Biotechnology ,TP248.13-248.65 - Abstract
In this study, using pure and copper-doped titanium dioxide (Cu-TiO2) nanostructures as the base matrix, enzyme-less label free myoglobin detection to identify acute myocardial infarction was performed and presented. The Cu-TiO2 nanomaterials were prepared using facile sol–gel method. In order to comprehend the morphologies, compositions, structural, optical, and electrochemical characteristics, the pure and Cu-TiO2 nanomaterials were investigated by several techniques which clearly revealed good crystallinity and high purity. To fabricate the enzyme-less label free biosensor, thick films of synthesized nanomaterials were applied to the surface of a pre-fabricated gold screen-printed electrode (Au-SPE), which serves as a working electrode to construct the myoglobin (Mb) biosensors. The interference study of the fabricated biosensor was also carried out with human serum albumin (HSA) and cytochrome c (cyt-c). Interestingly, the Cu-doped TiO2 nanomaterial-based Mb biosensor displayed a higher sensitivity of 61.51 µAcm−2/nM and a lower detection limit of 14 pM with a response time of less than 10 ms.
- Published
- 2022
- Full Text
- View/download PDF