253 results on '"post-translational modifications"'
Search Results
2. Comprehensive SUMO Proteomic Analyses Identify HIV Latency-Associated Proteins in Microglia
- Author
-
Fergan Imbert and Dianne Langford
- Subjects
SUMOylation ,HIV ,microglia ,post-translational modifications ,CNS ,Cytology ,QH573-671 - Abstract
SUMOylation, the post-translational modification of proteins by small ubiquitin-like modifiers, plays a critical role in regulating various cellular processes, including innate immunity. This modification is essential for modulating immune responses and influencing signaling pathways that govern the activation and function of immune cells. Recent studies suggest that SUMOylation also contributes to the pathophysiology of central nervous system (CNS) viral infections, where it contributes to the host response and viral replication dynamics. Here, we explore the multifaceted role of SUMOylation in innate immune signaling and its implications for viral infections within the CNS. Notably, we present novel proteomic analyses aimed at elucidating the role of the small ubiquitin-related modifier (SUMO) in human immunodeficiency virus (HIV) latency in microglial cells. Our findings indicate that SUMOylation may regulate key proteins involved in maintaining viral latency, suggesting a potential mechanism by which HIV evades immune detection in the CNS. By integrating insights from proteomics with functional studies, we anticipate these findings to be the groundwork for future studies on HIV–host interactions and the mechanisms that underlie SUMOylation during latent and productive infection.
- Published
- 2025
- Full Text
- View/download PDF
3. Fast and Simple Protocol for N-Glycome Analysis of Human Blood Plasma Proteome
- Author
-
Denis E. Maslov, Anna N. Timoshchuk, Alexander A. Bondar, Maxim P. Golubev, Anna G. Soplenkova, Maja Hanic, Sodbo Z. Sharapov, Olga N. Leonova, Yurii S. Aulchenko, and Tatiana S. Golubeva
- Subjects
N-glycosylation ,N-glycans ,xCGE-LIF analysis ,human blood plasma ,post-translational modifications ,APTS labeling ,Microbiology ,QR1-502 - Abstract
N-glycome analysis of individual proteins and tissues is crucial for fundamental and applied biomedical research and medical diagnosis and plays an important role in the evaluation of the quality of biopharmaceutical and biotechnological products. The interest in this research area continues to grow annually, thereby increasing the demand for the high-throughput profiling of human blood plasma N-glycome. In response to this need, we have developed an optimized, simple, and rapid protocol for the N-glycome profiling of human plasma proteins. This protocol encompasses the entire analysis cycle, from plasma isolation to N-glycan spectrum quantification. While the proposed method may have lower efficiency compared to already published high-throughput methods, its adaptability makes it suitable for implementation in virtually any molecular biological laboratory.
- Published
- 2024
- Full Text
- View/download PDF
4. Machine Learning Framework for Conotoxin Class and Molecular Target Prediction
- Author
-
Duc P. Truong, Lyman K. Monroe, Robert F. Williams, and Hau B. Nguyen
- Subjects
conotoxins ,machine learning ,collisional cross section ,post-translational modifications ,prediction ,receptors ,Medicine - Abstract
Conotoxins are small and highly potent neurotoxic peptides derived from the venom of marine cone snails which have captured the interest of the scientific community due to their pharmacological potential. These toxins display significant sequence and structure diversity, which results in a wide range of specificities for several different ion channels and receptors. Despite the recognized importance of these compounds, our ability to determine their binding targets and toxicities remains a significant challenge. Predicting the target receptors of conotoxins, based solely on their amino acid sequence, remains a challenge due to the intricate relationships between structure, function, target specificity, and the significant conformational heterogeneity observed in conotoxins with the same primary sequence. We have previously demonstrated that the inclusion of post-translational modifications, collisional cross sections values, and other structural features, when added to the standard primary sequence features, improves the prediction accuracy of conotoxins against non-toxic and other toxic peptides across varied datasets and several different commonly used machine learning classifiers. Here, we present the effects of these features on conotoxin class and molecular target predictions, in particular, predicting conotoxins that bind to nicotinic acetylcholine receptors (nAChRs). We also demonstrate the use of the Synthetic Minority Oversampling Technique (SMOTE)-Tomek in balancing the datasets while simultaneously making the different classes more distinct by reducing the number of ambiguous samples which nearly overlap between the classes. In predicting the alpha, mu, and omega conotoxin classes, the SMOTE-Tomek PCA PLR model, using the combination of the SS and P feature sets establishes the best performance with an overall accuracy (OA) of 95.95%, with an average accuracy (AA) of 93.04%, and an f1 score of 0.959. Using this model, we obtained sensitivities of 98.98%, 89.66%, and 90.48% when predicting alpha, mu, and omega conotoxin classes, respectively. Similarly, in predicting conotoxins that bind to nAChRs, the SMOTE-Tomek PCA SVM model, which used the collisional cross sections (CCSs) and the P feature sets, demonstrated the highest performance with 91.3% OA, 91.32% AA, and an f1 score of 0.9131. The sensitivity when predicting conotoxins that bind to nAChRs is 91.46% with a 91.18% sensitivity when predicting conotoxins that do not bind to nAChRs.
- Published
- 2024
- Full Text
- View/download PDF
5. An Emerging Way for Bacteria to Engage with Host Cells via Protein ADP-riboxanation
- Author
-
Wei Xian, Zhiheng Tang, Qinxin Zhang, Ying Wang, and Xiaoyun Liu
- Subjects
ADP-riboxanation ,ADP-ribosylation ,post-translational modifications ,bacterial effectors ,Medicine - Abstract
Post-translational modifications (PTMs) are increasingly recognized as important strategies used by bacterial pathogens to modulate host cellular functions. Protein ADP-riboxanation, a derivative of ADP-ribosylation, has recently emerged as a new biochemical way by which bacterial pathogens interact with host cells. Recent studies have revealed that this modification has broad regulatory roles in host processes including cell death, protein translation, and stress granule formation. Given that the vast majority of bacterial ADP-riboxanases are still uncharacterized, in this review we also highlight the utility of advanced proteomic tools in the functional dissection of ADP-riboxanation events during bacterial infections.
- Published
- 2024
- Full Text
- View/download PDF
6. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution
- Author
-
Vladimir N. Uversky
- Subjects
intrinsically disordered proteins ,protein–protein interactions ,post-translational modifications ,alternative splicing ,structural heterogeneity ,multifunctionality ,Science - Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
- Published
- 2024
- Full Text
- View/download PDF
7. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus
- Author
-
Xiaodi Zhang and Emiel P. C. van der Vorst
- Subjects
high density lipoprotein ,post-translational modifications ,HDL dysfunction ,type 2 diabetes mellitus ,cardiovascular disease ,Cytology ,QH573-671 - Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
- Published
- 2024
- Full Text
- View/download PDF
8. Valproic Acid Causes Redox-Regulated Post-Translational Protein Modifications That Are Dependent upon P19 Cellular Differentiation States
- Author
-
Ted B. Piorczynski, Jouber Calixto, Haley C. Henry, Kelli England, Susannah Cowley, Jackson M. Hansen, Jonathon T. Hill, and Jason M. Hansen
- Subjects
valproic acid (VPA) ,post-translational modifications ,NRF2 ,D3T ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis.
- Published
- 2024
- Full Text
- View/download PDF
9. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans
- Author
-
Irene Picazo and Eduardo A. Espeso
- Subjects
signalling ,post-translational modifications ,transcriptional factors ,cross regulation ,abiotic stress ,Cytology ,QH573-671 - Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX− mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.
- Published
- 2024
- Full Text
- View/download PDF
10. Post-Translational Modifications and Diabetes
- Author
-
Chiranjeev Sharma, Abu Hamza, Emily Boyle, Dickson Donu, and Yana Cen
- Subjects
post-translational modifications ,diabetes ,T1D ,T2D ,clinical trials ,Microbiology ,QR1-502 - Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
- Published
- 2024
- Full Text
- View/download PDF
11. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis
- Author
-
Paul T. Morse, Tasnim Arroum, Junmei Wan, Lucynda Pham, Asmita Vaishnav, Jamie Bell, Lauren Pavelich, Moh H. Malek, Thomas H. Sanderson, Brian F.P. Edwards, and Maik Hüttemann
- Subjects
cytochrome c ,post-translational modifications ,apoptosis ,respiration ,mitochondria ,electron transport chain ,Cytology ,QH573-671 - Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
- Published
- 2024
- Full Text
- View/download PDF
12. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy
- Author
-
Jacopo Di Gregorio, Laura Di Giuseppe, Sara Terreri, Michela Rossi, Giulia Battafarano, Olivia Pagliarosi, Vincenzo Flati, and Andrea Del Fattore
- Subjects
cancer ,osteosarcoma ,post-translational modifications ,ubiquitination ,NEDDylation ,SUMOylation ,Cytology ,QH573-671 - Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease’s recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
- Published
- 2024
- Full Text
- View/download PDF
13. Unveiling the Diversity and Modifications of Short Peptides in Buthus martensii Scorpion Venom through Liquid Chromatography-High Resolution Mass Spectrometry
- Author
-
Ling Zeng, Cangman Zhang, Mingrong Yang, Jianfeng Sun, Jingguang Lu, Huixia Zhang, Jianfeng Qin, Wei Zhang, and Zhihong Jiang
- Subjects
scorpion venom ,short peptides ,de novo sequencing ,post-translational modifications ,LC-MSn ,Medicine - Abstract
More recently, short peptides in scorpion venom have received much attention because of their potential for drug discovery. Although various biological effects of these short peptides have been found, their studies have been hindered by the lack of structural information especially in modifications. In this study, small peptides from scorpion venom were investigated using high-performance liquid chromatography high-resolution mass spectrometry followed by de novo sequencing. A total of 156 sequences consisting of 2~12 amino acids were temporarily identified from Buthus martensii scorpion venom. The identified peptides exhibited various post-translational modifications including N-terminal and C-terminal modifications, in which the N-benzoyl modification was first found in scorpion venom. Moreover, a short peptide Bz-ARF-NH2 demonstrated both N-terminal and C-terminal modifications simultaneously, which is extremely rare in natural peptides. In conclusion, this study provides a comprehensive insight into the diversity, modifications, and potential bioactivities of short peptides in scorpion venom.
- Published
- 2024
- Full Text
- View/download PDF
14. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry
- Author
-
Tamara M. Khlebodarova, Natalia V. Bogacheva, Andrey V. Zadorozhny, Alla V. Bryanskaya, Asya R. Vasilieva, Danil O. Chesnokov, Elena I. Pavlova, and Sergey E. Peltek
- Subjects
Komagataella phaffii ,promoters of heterologous proteins ,expression ,signal sequence ,protein production ,post-translational modifications ,Biology (General) ,QH301-705.5 - Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker’s yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species’ several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
- Published
- 2024
- Full Text
- View/download PDF
15. Oxidative Post-translational Protein Modifications upon Ischemia/Reperfusion Injury
- Author
-
Aleksandra Binek, Celia Castans, Inmaculada Jorge, Navratan Bagwan, José Manuel Rodríguez, Rodrigo Fernández-Jiménez, Carlos Galán-Arriola, Eduardo Oliver, Mónica Gómez, Agustín Clemente-Moragón, Borja Ibanez, Emilio Camafeita, and Jesús Vázquez
- Subjects
myocardial infarction ,ischemia/reperfusion ,ischemic preconditioning ,pig ischemia/reperfusion model ,proteomics ,post-translational modifications ,Therapeutics. Pharmacology ,RM1-950 - Abstract
While reperfusion, or restoration of coronary blood flow in acute myocardial infarction, is a requisite for myocardial salvage, it can paradoxically induce a specific damage known as ischemia/reperfusion (I/R) injury. Our understanding of the precise pathophysiological molecular alterations leading to I/R remains limited. In this study, we conducted a comprehensive and unbiased time-course analysis of post-translational modifications (PTMs) in the post-reperfused myocardium of two different animal models (pig and mouse) and evaluated the effect of two different cardioprotective therapies (ischemic preconditioning and neutrophil depletion). In pigs, a first wave of irreversible oxidative damage was observed at the earliest reperfusion time (20 min), impacting proteins essential for cardiac contraction. A second wave, characterized by irreversible oxidation on different residues and reversible Cys oxidation, occurred at late stages (6–12 h), affecting mitochondrial, sarcomere, and inflammation-related proteins. Ischemic preconditioning mitigated the I/R damage caused by the late oxidative wave. In the mouse model, the two-phase pattern of oxidative damage was replicated, and neutrophil depletion mitigated the late wave of I/R-related damage by preventing both Cys reversible oxidation and irreversible oxidation. Altogether, these data identify protein PTMs occurring late after reperfusion as an actionable therapeutic target to reduce the impact of I/R injury.
- Published
- 2024
- Full Text
- View/download PDF
16. Regulating Androgen Receptor Function in Prostate Cancer: Exploring the Diversity of Post-Translational Modifications
- Author
-
Lance Edward V. Lumahan, Mazia Arif, Amy E. Whitener, and Ping Yi
- Subjects
androgen receptor ,post-translational modifications ,prostate cancer ,acetylation ,methylation ,phosphorylation ,Cytology ,QH573-671 - Abstract
Androgen receptor (AR) transcriptional activity significantly influences prostate cancer (PCa) progression. In addition to ligand stimulation, AR transcriptional activity is also influenced by a variety of post-translational modifications (PTMs). A number of oncogenes and tumor suppressors have been observed leveraging PTMs to influence AR activity. Subjectively targeting these post-translational modifiers based on their impact on PCa cell proliferation is a rapidly developing area of research. This review elucidates the modifiers, contextualizes the effects of these PTMs on AR activity, and connects these cellular interactions to the progression of PCa.
- Published
- 2024
- Full Text
- View/download PDF
17. 'NO' Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD
- Author
-
Mariana G. Fronza, Bruna F. Ferreira, Isabela Pavan-Silva, Francisco S. Guimarães, and Sabrina F. Lisboa
- Subjects
nNOS ,post-translational modifications ,memory ,Organic chemistry ,QD241-441 - Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
- Published
- 2023
- Full Text
- View/download PDF
18. Differential Post-Translational Modifications of Proteins in Bladder Ischemia
- Author
-
Han-Pil Choi, Jing-Hua Yang, and Kazem M. Azadzoi
- Subjects
bladder ,ischemia ,protein profiling ,post-translational modifications ,non-coded amino acids ,Biology (General) ,QH301-705.5 - Abstract
Clinical and basic research suggests that bladder ischemia may be an independent variable in the development of lower urinary tract symptoms (LUTS). We have reported that ischemic changes in the bladder involve differential expression and post-translational modifications (PTMs) of the protein’s functional domains. In the present study, we performed in-depth analysis of a previously reported proteomic dataset to further characterize proteins PTMs in bladder ischemia. Our proteomic analysis of proteins in bladder ischemia detected differential formation of non-coded amino acids (ncAAs) that might have resulted from PTMs. In-depth analysis revealed that three groups of proteins in the bladder proteome, including contractile proteins and their associated proteins, stress response proteins, and cell signaling-related proteins, are conspicuously impacted by ischemia. Differential PTMs of proteins by ischemia seemed to affect important signaling pathways in the bladder and provoke critical changes in the post-translational structural integrity of the stress response, contractile, and cell signaling-related proteins. Our data suggest that differential PTMs of proteins may play a role in the development of cellular stress, sensitization of smooth muscle cells to contractile stimuli, and deferential cell signaling in bladder ischemia. These observations may provide the foundation for future research to validate and define clinical translation of the modified biomarkers for precise diagnosis of bladder dysfunction and the development of new therapeutic targets against LUTS.
- Published
- 2023
- Full Text
- View/download PDF
19. Conotoxin Prediction: New Features to Increase Prediction Accuracy
- Author
-
Lyman K. Monroe, Duc P. Truong, Jacob C. Miner, Samantha H. Adikari, Zachary J. Sasiene, Paul W. Fenimore, Boian Alexandrov, Robert F. Williams, and Hau B. Nguyen
- Subjects
conotoxins ,machine learning ,collisional cross section ,post-translational modifications ,prediction ,ion mobility–mass spectrometry ,Medicine - Abstract
Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins have extraordinary potential for medical therapeutics that include cancer, microbial infections, epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite the potential for these compounds in novel therapeutic treatment development, the process of identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming. This challenge requires a series of diverse, complex, and labor-intensive biological, toxicological, and analytical techniques for effective characterization. While recent attempts, using machine learning based solely on primary amino acid sequences to predict biological toxins (e.g., conotoxins and animal venoms), have improved toxin identification, these methods are limited due to peptide conformational flexibility and the high frequency of cysteines present in toxin sequences. This results in an enumerable set of disulfide-bridged foldamers with different conformations of the same primary amino acid sequence that affect function and toxicity levels. Consequently, a given peptide may be toxic when its cysteine residues form a particular disulfide-bond pattern, while alternative bonding patterns (isoforms) or its reduced form (free cysteines with no disulfide bridges) may have little or no toxicological effects. Similarly, the same disulfide-bond pattern may be possible for other peptide sequences and result in different conformations that all exhibit varying toxicities to the same receptor or to different receptors. We present here new features, when combined with primary sequence features to train machine learning algorithms to predict conotoxins, that significantly increase prediction accuracy.
- Published
- 2023
- Full Text
- View/download PDF
20. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants
- Author
-
Madhvi Sharma, Amanpreet K. Sidhu, Mahesh Kumar Samota, Mamta Gupta, Pushpendra Koli, and Mukesh Choudhary
- Subjects
histone ,ubiquitination ,ChIP ,methylation ,stress tolerance ,post-translational modifications ,Microbiology ,QR1-502 - Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants’ ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
- Published
- 2023
- Full Text
- View/download PDF
21. Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer
- Author
-
Namita Chutani, Sandhya Ragula, Khajamohiddin Syed, and Suresh B. Pakala
- Subjects
MORC2 ,chromatin remodeling ,transcription of genes ,post-translational modifications ,cancer invasion and migration ,metabolism ,Microbiology ,QR1-502 - Abstract
A newly discovered chromatin remodeler, MORC2, is a Microrchidia (MORC) family member. MORC2 acts as a chromatin remodeler by binding to the DNA and changing chromatin conformation using its ATPase domain. MORC2 is highly expressed in a variety of human cancers. It controls diverse signaling pathways essential for cancer development through its target genes and interacting partners. MORC2 promotes cancer cells’ growth, invasion, and migration by regulating the expression of genes involved in these processes. MORC2 is localized primarily in the nucleus and is also found in the cytoplasm. In the cytoplasm, MORC2 interacts with adenosine triphosphate (ATP)-citrate lyase (ACLY) to promote lipogenesis and cholesterogenesis in cancer. In the nucleus, MORC2 interacts with the transcription factor c-Myc to control the transcription of genes involved in glucose metabolism to drive cancer cell migration and invasion. Furthermore, MORC2 recruits on to the promoters of tumor suppressor genes to repress their transcription and expression to promote oncogenesis. In addition to its crucial function in oncogenesis, it plays a vital role in DNA repair. Overall, this review concisely summarizes the current knowledge about MORC2-regulated molecular pathways involved in cancer.
- Published
- 2023
- Full Text
- View/download PDF
22. Pseudomonas putida Metallothionein: Structural Analysis and Implications of Sustainable Heavy Metal Detoxification in Madinah
- Author
-
Munazzah Tasleem, Abdel-Aziz A. A. El-Sayed, Wesam M. Hussein, and Abdulwahed Alrehaily
- Subjects
Pseudomonas putida ,in silico bioremediation ,heavy-metal docking ,post-translational modifications ,protein–protein interaction ,Chemical technology ,TP1-1185 - Abstract
Heavy metals, specifically cadmium (Cd) and lead (Pb), contaminating water bodies of Madinah (Saudi Arabia), is a significant environmental concern that necessitates prompt action. Madinah is exposed to toxic metals from multiple sources, such as tobacco, fresh and canned foods, and industrial activities. This influx of toxic metals presents potential hazards to both human health and the surrounding environment. The aim of this study is to explore the viability of utilizing metallothionein from Pseudomonas putida (P. putida) as a method of bioremediation to mitigate the deleterious effects of pollution attributable to Pb and Cd. The use of various computational approaches, such as physicochemical assessments, structural modeling, molecular docking, and protein–protein interaction investigations, has enabled us to successfully identify the exceptional metal-binding properties that metallothionein displays in P. putida. The identification of specific amino acid residues, namely GLU30 and GLN21, is crucial in understanding their pivotal role in facilitating the coordination of lead and cadmium. In addition, post-translational modifications present opportunities for augmenting the capacity to bind metals, thereby creating possibilities for focused engineering. The intricate web of interactions among proteins serves to emphasize the protein’s participation in essential cellular mechanisms, thereby emphasizing its potential contributions to detoxification pathways. The present study establishes a strong basis for forthcoming experimental inquiries, offering potential novel approaches in bioremediation to tackle the issue of heavy metal contamination. Metallothionein from P. putida presents a highly encouraging potential as a viable remedy for environmental remediation, as it is capable of proficiently alleviating the detrimental consequences related to heavy metal pollution.
- Published
- 2023
- Full Text
- View/download PDF
23. Citrullination Post-Translational Modification: State of the Art of Brain Tumor Investigations and Future Perspectives
- Author
-
Diana Valeria Rossetti, Alexandra Muntiu, Luca Massimi, Gianpiero Tamburrini, and Claudia Desiderio
- Subjects
post-translational modifications ,citrullination ,deimination ,brain tumors ,Medicine (General) ,R5-920 - Abstract
The present review aims to describe the state of the art of research studies investigating the citrullination post-translational modification in adult and pediatric brain tumors. After an introduction to the deimination reaction and its occurrence in proteins and polypeptide chains, the role of the citrullination post-translational modification in physiological as well as pathological states, including cancer, is summarized, and the recent literature and review papers on the topic are examined. A separate section deals with the specific focus of investigation of the citrullination post-translational modification in relation to brain tumors, examining the state of the art of the literature that mainly concerns adult and pediatric glioblastoma and posterior fossa pediatric tumors. We examined the literature on this emerging field of research, and we apologize in advance for any possible omission. Although only a few studies inspecting citrullination in brain tumors are currently available, the results interestingly highlighted different profiles of the citrullinome associated with different histotypes. The data outlined the importance of this post-translational modification in modulating cancer invasion and chemoresistance, influencing key factors involved in apoptosis, cancer cell communication through extracellular vesicle release, autophagy, and gene expression processes, which suggests the prospect of taking citrullination as a target of cancer treatment or as a source of potential diagnostic and prognostic biomarkers for potential clinical applications in the future.
- Published
- 2023
- Full Text
- View/download PDF
24. Neuronal Nitric Oxide Synthase and Post-Translational Modifications in the Development of Central Nervous System Diseases: Implications and Regulation
- Author
-
Cristina Maccallini and Rosa Amoroso
- Subjects
neurodegenerative disorders ,nitric oxide ,nNOS ,nNOS inhibitors ,post-translational modifications ,PSD95-nNOS interaction inhibitors ,Organic chemistry ,QD241-441 - Abstract
In the Central Nervous System (CNS), Nitric Oxide (NO) is mainly biosynthesized by neuronal Nitric Oxide Synthase (nNOS). The dysregulated activation of nNOS in neurons is critical in the development of different conditions affecting the CNS. The excessive production of NO by nNOS is responsible for a number of proteins’ post-translational modifications (PTMs), which can lead to aberrant biochemical pathways, impairing CNS functions. In this review, we briefly revise the main implications of dysregulated nNOS in the progression of the most prevalent CNS neurodegenerative disorders, i.e., Alzheimer’s disease (AD) and Parkinson’s disease, as well as in the development of neuronal disorders. Moreover, a specific focus on compounds able to modulate nNOS activity as promising therapeutics to tackle different neuronal diseases is presented.
- Published
- 2023
- Full Text
- View/download PDF
25. Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers
- Author
-
Marco Agostini, Pietro Traldi, and Mahmoud Hamdan
- Subjects
mass spectrometry ,post-translational modifications ,drug resistance ,Medicine (General) ,R5-920 - Abstract
Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.
- Published
- 2023
- Full Text
- View/download PDF
26. Regulation of Ras Signaling by S-Nitrosylation
- Author
-
Sónia Simão, Rafaela Ribeiro Agostinho, Antonio Martínez-Ruiz, and Inês Maria Araújo
- Subjects
Ras ,nitric oxide ,S-nitrosylation ,post-translational modifications ,neuronal cells ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Ras are a family of small GTPases that function as signal transduction mediators and are involved in cell proliferation, migration, differentiation and survival. The significance of Ras is further evidenced by the fact that Ras genes are among the most mutated oncogenes in different types of cancers. After translation, Ras proteins can be targets of post-translational modifications (PTM), which can alter the intracellular dynamics of the protein. In this review, we will focus on how S-nitrosylation of Ras affects the way these proteins interact with membranes, its cellular localization, and its activity. S-Nitrosylation occurs when a nitrosyl moiety of nitric oxide (NO) is covalently attached to a thiol group of a cysteine residue in a target protein. In Ras, the conserved Cys118 is the most surface-exposed Cys and the preferable residue for NO action, leading to the initiation of transduction events. Ras transduces the mitogen-activated protein kinases (MAPK), the phosphoinositide-3 kinase (PI3K) and the RalGEF cellular pathways. S-Nitrosylation of elements of the RalGEF cascade remains to be identified. On the contrary, it is well established that several components of the MAPK and PI3K pathways, as well as different proteins associated with these cascades, can be modified by S-nitrosylation. Overall, this review presents a better understanding of Ras S-nitrosylation, increasing the knowledge on the dynamics of these proteins in the presence of NO and the underlying implications in cellular signaling.
- Published
- 2023
- Full Text
- View/download PDF
27. In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications
- Author
-
Piotr Minkiewicz, Małgorzata Darewicz, and Anna Iwaniak
- Subjects
bovine casein ,bioactive peptides ,BIOPEP-UWM ,amino acid sequence analysis ,post-translational modifications ,phosphorylation ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Bovine casein is one of the most known precursors of bioactive peptides among food proteins. Thus far, in silico investigations addressing casein have taken no account of the impact of modifications of amino acid residues on the feasibility of bioactive peptide release. The present study aimed to determine the effect of such modification on the possibility of release of bioactive peptides from casein during simulated digestion. The αs1-, αs2-, β-, and κ-casein sequences were deposited in the BIOPEP-UWM protein database considering phosphorylated amino acids, cysteine residues forming disulfide bridges, and pyroglutamic acid residues. The frequency of occurrence of bioactive fragments and the frequency of their release by digestive enzymes were determined for the analyzed modified and unmodified proteins. Peptides found exclusively in the sequences of unmodified proteins were deemed as false-positive results. From 1.74% (β-casein A2) to 4.41% (αs2-casein B and D) of the false-positive results were obtained for the total frequency of occurrence of bioactive fragments (sums of frequencies computed for all activities). In turn, from 1.78% (κ-casein B) to 9.18% (β-casein A2 and A3) of false-positive results were obtained for the predicted total frequency of release of bioactive peptides by the system of digestive enzymes (pepsin, trypsin, and chymotrypsin).
- Published
- 2023
- Full Text
- View/download PDF
28. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review
- Author
-
Nor Hayati Ismail, Ali Mussa, Mutaz Jamal Al-Khreisat, Shafini Mohamed Yusoff, Azlan Husin, and Muhammad Farid Johan
- Subjects
multiple myeloma ,proteomics ,post-translational modifications ,mass spectrometry ,Medicine (General) ,R5-920 - Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
- Published
- 2023
- Full Text
- View/download PDF
29. Impact of Bioinformatics Search Parameters for Peptides’ Identification and Their Post-Translational Modifications: A Case Study of Proteolysed Gelatines from Beef, Pork, and Fish
- Author
-
Mouna Ambli, Barbara Deracinois, Anne-Sophie Jenequin, Rozenn Ravallec, Benoit Cudennec, and Christophe Flahaut
- Subjects
bioinformatics ,gelatine ,hydrolysate ,hydroxyproline ,mass spectrometry ,post-translational modifications ,Chemical technology ,TP1-1185 - Abstract
Bioinformatics software, allowing the identification of peptides by the comparison of peptide fragmentation spectra obtained by mass spectrometry versus targeted databases or directly by de novo sequencing, is now mandatory in peptidomics/proteomics approaches. Programming the identification software requires specifying, among other things, the mass measurement accuracy of the instrument and the digestion enzyme used with the number of missed cleavages allowed. Moreover, these software algorithms are able to identify a large number of post-translational modifications (PTMs). However, peptide and PTM identifications are challenging in the agrofood field due to non-specific cleavage sites of physiological- or food-grade enzymes and the number and location of PTMs. In this study, we show the importance of customized software programming to obtain a better peptide and PTM identification rate in the agrofood field. A gelatine product and one industrial gelatine hydrolysate from three different sources (beef, pork, and fish), each digested by simulated gastrointestinal digestion, MS-grade trypsin, or both, were used to perform the comparisons. Two main points are illustrated: (i) the impact of the set-up of specific enzyme versus no specific enzyme use and (ii) the impact of a maximum of six PTMs allowed per peptide versus the standard of three. Prior knowledge of the composition of the raw proteins is an important asset for better identification of peptide sequences.
- Published
- 2023
- Full Text
- View/download PDF
30. Age-Related Changes in Post-Translational Modifications of Proteins from Whole Male and Female Skeletal Elements
- Author
-
Elizabeth Johnston and Michael Buckley
- Subjects
post-translational modifications ,biological age estimation ,forensic proteomics ,rat bone ,Organic chemistry ,QD241-441 - Abstract
One of the key questions in forensic cases relates to some form of age inference, whether this is how old a crime scene is, when in time a particular crime was committed, or how old the victim was at the time of the crime. These age-related estimations are currently achieved through morphological methods with varying degrees of accuracy. As a result, biomolecular approaches are considered of great interest, with the relative abundances of several protein markers already recognized for their potential forensic significance; however, one of the greatest advantages of proteomic investigations over genomics ones is the wide range of post-translational modifications (PTMs) that make for a complex but highly dynamic resource of information. Here, we explore the abundance of several PTMs including the glycosylation, deamidation, and oxidation of several key proteins (collagen, fetuin A, biglycan, serum albumin, fibronectin and osteopontin) as being of potential value to the development of an age estimation tool worthy of further evaluation in forensic contexts. We find that glycosylations lowered into adulthood but deamidation and oxidation increased in the same age range.
- Published
- 2023
- Full Text
- View/download PDF
31. Photosynthesis in the Biomass Model Species Lemna minor Displays Plant-Conserved and Species-Specific Features
- Author
-
Monique Liebers, Elisabeth Hommel, Björn Grübler, Jakob Danehl, Sascha Offermann, and Thomas Pfannschmidt
- Subjects
Lemna minor ,Arabidopsis thaliana ,photosynthesis ,post-translational modifications ,photosystem antenna ,photoinhibition ,Botany ,QK1-989 - Abstract
Lemnaceae are small freshwater plants with extraordinary high growth rates. We aimed to test whether this correlates with a more efficient photosynthesis, the primary energy source for growth. To this end, we compared photosynthesis properties of the duckweed Lemna minor and the terrestrial model plant Arabidopsis thaliana. Chlorophyll fluorescence analyses revealed high similarity in principle photosynthesis characteristics; however, Lemna exhibited a more effective light energy transfer into photochemistry and more stable photosynthesis parameters especially under high light intensities. Western immunoblot analyses of representative photosynthesis proteins suggested potential post-translational modifications in Lemna proteins that are possibly connected to this. Phospho-threonine phosphorylation patterns of thylakoid membrane proteins displayed a few differences between the two species. However, phosphorylation-dependent processes in Lemna such as photosystem II antenna association and the recovery from high-light-induced photoinhibition were not different from responses known from terrestrial plants. We thus hypothesize that molecular differences in Lemna photosynthesis proteins are associated with yet unidentified mechanisms that improve photosynthesis and growth efficiencies. We also developed a high-magnification video imaging approach for Lemna multiplication which is useful to assess the impact of external factors on Lemna photosynthesis and growth.
- Published
- 2023
- Full Text
- View/download PDF
32. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection
- Author
-
Ji Woo Park, Matthew D. Tyl, and Ileana M. Cristea
- Subjects
post-translational modifications ,mitochondria ,virus–host interactions ,mass spectrometry ,proteomics ,phosphorylation ,Microbiology ,QR1-502 - Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
- Published
- 2023
- Full Text
- View/download PDF
33. Physiological Benefits of Dietary Lysophospholipid Supplementation in a Marine Fish Model: Deep Analyses of Modes of Action
- Author
-
Antoni Ibarz, Ignasi Sanahuja, Waldo G. Nuez-Ortín, Laura Martínez-Rubio, and Laura Fernández-Alacid
- Subjects
Atlantic salmon ,dietary emulsifiers ,interactome ,lipid metabolism ,post-translational modifications ,Veterinary medicine ,SF600-1100 ,Zoology ,QL1-991 - Abstract
Given the hydrophilic structure of lysophospholipids (LPLs), their dietary inclusion translates into a better emulsifying capacity of the dietary components. The present study aimed to understand the mechanisms underlying the growth-promoting effect of LPL supplementation by undertaking deep analyses of the proximal intestine and liver interactomes. The Atlantic salmon (Salmo salar) was selected as the main aquaculture species model. The animals were divided into two groups: one was fed a control diet (C-diet) and the other a feed (LPL-diet) supplemented with an LPL-based digestive enhancer (0.1% AQUALYSO®, Adisseo). The LPL-diet had a positive effect on the fish by increasing the final weight by 5% and reducing total serum lipids, mainly due to a decrease in the plasma phospholipid (p < 0.05). In the intestine, the upregulated interactome suggests a more robust digestive capacity, improving vesicle-trafficking-related proteins, complex sugar hydrolysis, and lipid metabolism. In the liver, the LPL-diet promotes better nutrients, increasing several metabolic pathways. The downregulation of the responses to stress and stimuli could be related to a reduced proinflammatory state. This study on the benefits and modes of action of dietary LPLs opens a new window into fish nutrition and could be extended to other productive species.
- Published
- 2023
- Full Text
- View/download PDF
34. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation
- Author
-
Bruno Carmona, H. Susana Marinho, Catarina Lopes Matos, Sofia Nolasco, and Helena Soares
- Subjects
acetylation ,tubulin ,Lys40 ,microtubules ,post-translational modifications ,αTAT1 ,Biology (General) ,QH301-705.5 - Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
- Published
- 2023
- Full Text
- View/download PDF
35. Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions
- Author
-
Kenji Saito and Huxing Cui
- Subjects
estrogen receptor alpha ,splicing isoforms ,post-translational modifications ,mutant mouse models ,Cytology ,QH573-671 - Abstract
The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5′-untranslated region (5′-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.
- Published
- 2023
- Full Text
- View/download PDF
36. A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences
- Author
-
K. Alice Lindsay, Nedine Abdelhamid, Shehani Kahawatte, Ruxandra I. Dima, Dan L. Sackett, Tara M. Finegan, and Jennifer L. Ross
- Subjects
microtubule-severing enzyme ,tubulin isotypes ,tubulin code ,post-translational modifications ,katanin ,microtubule-associated protein ,Microbiology ,QR1-502 - Abstract
In cells, microtubule location, length, and dynamics are regulated by a host of microtubule-associated proteins and enzymes that read where to bind and act based on the microtubule “tubulin code,” which is predominantly encoded in the tubulin carboxy-terminal tail (CTT). Katanin is a highly conserved AAA ATPase enzyme that binds to the tubulin CTTs to remove dimers and sever microtubules. We have previously demonstrated that short CTT peptides are able to inhibit katanin severing. Here, we examine the effects of CTT sequences on this inhibition activity. Specifically, we examine CTT sequences found in nature, alpha1A (TUBA1A), detyrosinated alpha1A, Δ2 alpha1A, beta5 (TUBB/TUBB5), beta2a (TUBB2A), beta3 (TUBB3), and beta4b (TUBB4b). We find that these natural CTTs have distinct abilities to inhibit, most noticeably beta3 CTT cannot inhibit katanin. Two non-native CTT tail constructs are also unable to inhibit, despite having 94% sequence identity with alpha1 or beta5 sequences. Surprisingly, we demonstrate that poly-E and poly-D peptides are capable of inhibiting katanin significantly. An analysis of the hydrophobicity of the CTT constructs indicates that more hydrophobic polypeptides are less inhibitory than more polar polypeptides. These experiments not only demonstrate inhibition, but also likely interaction and targeting of katanin to these various CTTs when they are part of a polymerized microtubule filament.
- Published
- 2023
- Full Text
- View/download PDF
37. Phosphorylation of the Human DNA Glycosylase NEIL2 Is Affected by Oxidative Stress and Modulates Its Activity
- Author
-
Camilla Myrup Holst, Nanna Brøndum Andersen, Vibeke Thinggaard, Mine Tilken, Sofie Lautrup, Cinzia Tesauro, and Tinna Stevnsner
- Subjects
base excision repair ,cyclin-dependent kinase 5 ,post-translational modifications ,protein kinase C ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.
- Published
- 2023
- Full Text
- View/download PDF
38. ADP-Ribosylation in Antiviral Innate Immune Response
- Author
-
Qian Du, Ying Miao, Wei He, and Hui Zheng
- Subjects
ADP-ribosylation ,PARylation ,MARylation ,post-translational modifications ,viral infection ,antiviral response ,Medicine - Abstract
Adenosine diphosphate (ADP)-ribosylation is a reversible post-translational modification catalyzed by ADP-ribosyltransferases (ARTs). ARTs transfer one or more ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to the target substrate and release the nicotinamide (Nam). Accordingly, it comes in two forms: mono-ADP-ribosylation (MARylation) and poly-ADP-ribosylation (PARylation). ADP-ribosylation plays important roles in many biological processes, such as DNA damage repair, gene regulation, and energy metabolism. Emerging evidence demonstrates that ADP-ribosylation is implicated in host antiviral immune activity. Here, we summarize and discuss ADP-ribosylation modifications that occur on both host and viral proteins and their roles in host antiviral response.
- Published
- 2023
- Full Text
- View/download PDF
39. Regulation of Pre-mRNA Splicing: Indispensable Role of Post-Translational Modifications of Splicing Factors
- Author
-
Miroslava Kretova, Tomas Selicky, Ingrid Cipakova, and Lubos Cipak
- Subjects
pre-mRNA splicing ,splicing factors ,alternative splicing ,post-translational modifications ,gene expression ,Science - Abstract
Pre-mRNA splicing is a process used by eukaryotic cells to generate messenger RNAs that can be translated into proteins. During splicing, the non-coding regions of the RNAs (introns) are removed from pre-mRNAs and the coding regions (exons) are joined together, resulting in mature mRNAs. The particular steps of splicing are executed by the multimegadalton complex called a spliceosome. This complex is composed of small nuclear ribonucleoproteins, various splicing factors, and other regulatory and auxiliary proteins. In recent years, various post-translational modifications of splicing factors have been shown to contribute significantly to regulation of processes involved in pre-mRNA splicing. In this review, we provide an overview of the most important post-translational modifications of splicing factors that are indispensable for their normal function during pre-mRNA splicing (i.e., phosphorylation, acetylation, methylation, ubiquitination and sumoylation). Moreover, we also discuss how the defects in regulation of splicing factors are related to the development of cancer.
- Published
- 2023
- Full Text
- View/download PDF
40. Nuclear PTEN’s Functions in Suppressing Tumorigenesis: Implications for Rare Cancers
- Author
-
Casey G. Langdon
- Subjects
nuclear PTEN ,PTEN ,PTEN hamartoma tumor syndrome ,subcellular localization ,nuclear import ,post-translational modifications ,Microbiology ,QR1-502 - Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
- Published
- 2023
- Full Text
- View/download PDF
41. The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes
- Author
-
Xiaohui Ji, Wenqian Zhang, Liqin Yin, Zunhan Shi, Jinwen Luan, Linshan Chen, and Longhua Liu
- Subjects
post-translational modifications ,PPARγ ,diabetes ,thiazolidinediones ,Microbiology ,QR1-502 - Abstract
The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs’ side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.
- Published
- 2022
- Full Text
- View/download PDF
42. Proteomic Profiling of Major Peanut Allergens and Their Post-Translational Modifications Affected by Roasting
- Author
-
Teodora Đukić, Katarina Smiljanić, Jelena Mihailović, Ivana Prodić, Danijela Apostolović, Shu-Hua Liu, Michelle M. Epstein, Marianne van Hage, Dragana Stanić-Vučinić, and Tanja Ćirković Veličković
- Subjects
peanut allergen profiling ,roasting ,allergy ,shotgun proteomics ,high resolution mass spectrometry (HRMS) ,post-translational modifications ,Chemical technology ,TP1-1185 - Abstract
Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. We conducted a bottom-up proteomic study to investigate the impact of peanut roasting on readily soluble allergens and their PTM profiles. Proteomic PTM profiling of certain modifications was confirmed by Western blotting with a series of PTM-specific antibodies. In addition to inducing protein aggregation and denaturation, roasting may facilitate change in their PTM pattern and relative profiling. We have shown that Ara h 1 is the most modified major allergen in both samples in terms of modification versatility and extent. The most frequent PTM was methionine oxidation, especially in roasted samples. PTMs uniquely found in roasted samples were hydroxylation (Trp), formylation (Arg/Lys), and oxidation or hydroxylation (Asn). Raw and roasted peanut extracts did not differ in the binding of IgE from the serum of peanut-sensitised individuals done by ELISA. This study provides a better understanding of how roasting impacts the PTM profile of major peanut allergens and provides a good foundation for further exploration of PTMs.
- Published
- 2022
- Full Text
- View/download PDF
43. Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication
- Author
-
Lamya Alomair, Sabeena Mustafa, Mohsin Saleet Jafri, Wardah Alharbi, Abdulrhman Aljouie, Fahad Almsned, Mohammed Alawad, Yahya Abdulfattah Bokhari, and Mamoon Rashid
- Subjects
nonstructural proteins ,phosphorylation ,post-translational modifications ,kinases ,molecular dynamics ,Microbiology ,QR1-502 - Abstract
Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.
- Published
- 2022
- Full Text
- View/download PDF
44. Evolutionary Signals in Coronaviral Structural Proteins Suggest Possible Complex Mechanisms of Post-Translational Regulation in SARS-CoV-2 Virus
- Author
-
Ramiro Garza-Domínguez and Francisco Torres-Quiroz
- Subjects
post-translational modifications ,coronaviruses ,SARS-CoV-2 ,evolution ,crosstalk ,Microbiology ,QR1-502 - Abstract
Post-translational regulation of proteins has emerged as a central topic of research in the field of functional proteomics. Post-translational modifications (PTMs) dynamically control the activities of proteins and are involved in a wide range of biological processes. Crosstalk between different types of PTMs represents a key mechanism of regulation and signaling. Due to the current pandemic of the novel and dangerous SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) virus, here we present an in silico analysis of different types of PTMs in structural proteins of coronaviruses. A dataset of PTM sites was studied at three levels: conservation analysis, mutational analysis and crosstalk analysis. We identified two sets of PTMs which could have important functional roles in the regulation of the structural proteins of coronaviruses. Additionally, we found seven interesting signals of potential crosstalk events. These results reveal a higher level of complexity in the mechanisms of post-translational regulation of coronaviral proteins and provide new insights into the adaptation process of the SARS-CoV-2 virus.
- Published
- 2022
- Full Text
- View/download PDF
45. The XPA Protein—Life under Precise Control
- Author
-
Yuliya S. Krasikova, Olga I. Lavrik, and Nadejda I. Rechkunova
- Subjects
XPA ,nucleotide excision repair (NER) ,DNA repair ,post-translational modifications ,PARP1 ,PARylation ,Cytology ,QH573-671 - Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA’s scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein’s activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
- Published
- 2022
- Full Text
- View/download PDF
46. The Glycosylation of Immune Checkpoints and Their Applications in Oncology
- Author
-
Linlin Zheng, Qi Yang, Feifei Li, Min Zhu, Haochi Yang, Tian Tan, Binghuo Wu, Mingxin Liu, Chuan Xu, Jun Yin, and Chenhui Cao
- Subjects
post-translational modifications ,glycosylation ,immune checkpoints ,cancer therapy ,GlycoRNA ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Tumor therapies have entered the immunotherapy era. Immune checkpoint inhibitors have achieved tremendous success, with some patients achieving long-term tumor control. Tumors, on the other hand, can still accomplish immune evasion, which is aided by immune checkpoints. The majority of immune checkpoints are membrane glycoproteins, and abnormal tumor glycosylation may alter how the immune system perceives tumors, affecting the body’s anti-tumor immunity. Furthermore, RNA can also be glycosylated, and GlycoRNA is important to the immune system. Glycosylation has emerged as a new hallmark of tumors, with glycosylation being considered a potential therapeutic approach. The glycosylation modification of immune checkpoints and the most recent advances in glycosylation-targeted immunotherapy are discussed in this review.
- Published
- 2022
- Full Text
- View/download PDF
47. Role of SUMOylation in Neurodegenerative Diseases
- Author
-
Nicolas Mandel and Nitin Agarwal
- Subjects
post-translational modifications ,SUMOylation ,neuronal diseases ,Alzheimer’s disease ,Parkinson’s disease ,Huntington’s disease ,Cytology ,QH573-671 - Abstract
Neurodegenerative diseases (NDDs) are irreversible, progressive diseases with no effective treatment. The hallmark of NDDs is the aggregation of misfolded, modified proteins, which impair neuronal vulnerability and cause brain damage. The loss of synaptic connection and the progressive loss of neurons result in cognitive defects. Several dysregulated proteins and overlapping molecular mechanisms contribute to the pathophysiology of NDDs. Post-translational modifications (PTMs) are essential regulators of protein function, trafficking, and maintaining neuronal hemostasis. The conjugation of a small ubiquitin-like modifier (SUMO) is a reversible, dynamic PTM required for synaptic and cognitive function. The onset and progression of neurodegenerative diseases are associated with aberrant SUMOylation. In this review, we have summarized the role of SUMOylation in regulating critical proteins involved in the onset and progression of several NDDs.
- Published
- 2022
- Full Text
- View/download PDF
48. The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis
- Author
-
Shiuan-Chen Lin, Chun Ma, Kao-Jung Chang, Han-Ping Cheong, Ming-Cheng Lee, Yuan-Tzu Lan, Chien-Ying Wang, Shih-Hwa Chiou, Teh-Ia Huo, Tsui-Kang Hsu, Ping-Hsing Tsai, and Yi-Ping Yang
- Subjects
WNK kinase ,post-translational modifications ,blood pressure regulation ,NCC ,NKCCs ,ROMK ,Biology (General) ,QH301-705.5 - Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
- Published
- 2022
- Full Text
- View/download PDF
49. Targeted Bottom–Up Mass Spectrometry Approach for the Relative Quantification of Post-Translational Modification of Bovine κ-Casein during Milk Fermentation
- Author
-
Sorel Tchewonpi Sagu, Harshadrai M. Rawel, and Sascha Rohn
- Subjects
bovine milk ,fermentation ,κ-casein ,post-translational modifications ,glycosylation, phosphorylation ,mass spectrometry ,Organic chemistry ,QD241-441 - Abstract
κ-casein (κ-CN) is one of the key components in bovine milk, playing a unique role in the structuration of casein micelles. It contains in its chemical structure up to sixteen amino acid residues (mainly serine and threonine) susceptible to modifications, including glycosylation and phosphorylation, which may further be formed during milk processing. In this study, changes in post-translational modification (PTM) of κ-CN during bovine milk fermentation were investigated. One-to-five-day fermented milk samples were produced. A traditional bottom–up proteomics approach was used to establish a multiple-reaction monitoring (MRM) method for relative quantification of κ-CN PTM. Endoproteinase Glu-C was found to efficiently digest the κ-CN molecule. The developed LC-MS method was validated by performing assessments of linearity, precision, repeatability, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Among the yielded peptides, four of them containing serine and threonine residues were identified and the unmodified as well as the modified variants of each of them were relatively quantified. These peptides were (1) IPTINTIASGEPTSTTE [140, 158], (2) STVATLE [162, 168], (3) DSPE [169, 172], and (4) INTVQVTSTAV [180, 190]. Distribution analysis between unmodified and modified peptides revealed that over 50% of κ-CN was found in one of its modified forms in milk. The fermentation process further significantly altered the composition between unmodified/modified κ-CN, with glycoslaytion being predominant compared to phosphorylation (p < 0.01). Further method development towards α and β-CN fractions and their PTM behavior would be an asset to better understand the changes undergone by milk proteins and the micellar structure during fermentation.
- Published
- 2022
- Full Text
- View/download PDF
50. SUMOylation and Viral Infections of the Brain
- Author
-
Fergan Imbert, Gabrielle Leavitt, and Dianne Langford
- Subjects
SUMOylation ,post-translational modifications ,brain ,neuroinflammation ,HIV ,ZIKA ,Medicine - Abstract
The small ubiquitin-like modifier (SUMO) system regulates numerous biological processes, including protein localization, stability and/or activity, transcription, and DNA repair. SUMO also plays critical roles in innate immunity and antiviral defense by mediating interferon (IFN) synthesis and signaling, as well as the expression and function of IFN-stimulated gene products. Viruses including human immunodeficiency virus-1, Zika virus, herpesviruses, and coronaviruses have evolved to exploit the host SUMOylation system to counteract the antiviral activities of SUMO proteins and to modify their own proteins for viral persistence and pathogenesis. Understanding the exploitation of SUMO is necessary for the development of effective antiviral therapies. This review summarizes the interplay between viruses and the host SUMOylation system, with a special emphasis on viruses with neuro-invasive properties that have pathogenic consequences on the central nervous system.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.