1. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.
- Author
-
Daiki Nakatsu, Yuta Horiuchi, Fumi Kano, Yoshiyuki Noguchi, Taichi Sugawara, Iseki Takamoto, Naoto Kubota, Takashi Kadowaki, and Masayuki Murata
- Subjects
- *
CYSTEINE , *SULFUR amino acids , *GLUCOSE , *ALDOSES , *EXCRETION - Abstract
Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucosestimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane- permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucoseinduced ATP production, and biphasic insulin secretion in L-cysteine- treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF