1. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4
- Author
-
Polímeros y Materiales Avanzados: Física, Química y Tecnología, Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Yu, Jiahao, Garcés Pineda, Felipe A., González Cobos, Jesús, Peña Díaz, Marina, Rogero Blanco, Celia, Giménez, Sixto, Spadaro, Maria Chiara, Arbiol, Jordi, Barja Martínez, Sara, Galán Mascarós, José Ramón, Polímeros y Materiales Avanzados: Física, Química y Tecnología, Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Yu, Jiahao, Garcés Pineda, Felipe A., González Cobos, Jesús, Peña Díaz, Marina, Rogero Blanco, Celia, Giménez, Sixto, Spadaro, Maria Chiara, Arbiol, Jordi, Barja Martínez, Sara, and Galán Mascarós, José Ramón
- Abstract
Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO2, are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co3O4-based anodes in 1 M H2SO4 (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co3O4@C composites reliably drive O-2 evolution a 10 mA cm(-2) current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes. While water electrolysis offers a renewable way to produce hydrogen, there are few Earth-abundant, acid-stable water oxidation catalysts. Here, authors show Co3O4, when protected by a partially hydrophobic environment, to sustain 40 h activity without structural or chemical transformations.
- Published
- 2022