4 results on '"E., Fiorillo"'
Search Results
2. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy.
- Author
-
Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A, Virdis F, Piras MG, Lobina M, Marongiu M, Pitzalis M, Deidda F, Loizedda A, Onano S, Zoledziewska M, Sawcer S, Devoto M, Gorospe M, Abecasis GR, Floris M, Pala M, Schlessinger D, Fiorillo E, and Cucca F
- Subjects
- Autoimmune Diseases drug therapy, Autoimmune Diseases epidemiology, Autoimmune Diseases pathology, Humans, Italy epidemiology, Phenotype, Polymorphism, Single Nucleotide genetics, Autoimmune Diseases genetics, Autoimmunity genetics, Genetic Predisposition to Disease, Genome-Wide Association Study
- Abstract
We report on the influence of ~22 million variants on 731 immune cell traits in a cohort of 3,757 Sardinians. We detected 122 significant (P < 1.28 × 10
-11 ) independent association signals for 459 cell traits at 70 loci (53 of them novel) identifying several molecules and mechanisms involved in cell regulation. Furthermore, 53 signals at 36 loci overlapped with previously reported disease-associated signals, predominantly for autoimmune disorders, highlighting intermediate phenotypes in pathogenesis. Collectively, our findings illustrate complex genetic regulation of immune cells with highly selective effects on autoimmune disease risk at the cell-subtype level. These results identify drug-targetable pathways informing the design of more specific treatments for autoimmune diseases.- Published
- 2020
- Full Text
- View/download PDF
3. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
- Author
-
Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R, Matoba N, McMahon G, Mulas A, Orrù V, Palviainen T, Pandit A, Reginsson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafò MR, Saccone NL, Willer CJ, Cornelis MC, David SP, Hinds DA, Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, Thorgeirsson TE, Abecasis G, Liu DJ, and Vrieze S
- Subjects
- Female, Genetic Variation genetics, Genome-Wide Association Study methods, Humans, Male, Middle Aged, Phenotype, Risk, Tobacco Products, Alcohol Drinking genetics, Smoking genetics, Tobacco Use Disorder genetics
- Abstract
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders
1 . They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.- Published
- 2019
- Full Text
- View/download PDF
4. Population- and individual-specific regulatory variation in Sardinia.
- Author
-
Pala M, Zappala Z, Marongiu M, Li X, Davis JR, Cusano R, Crobu F, Kukurba KR, Gloudemans MJ, Reinier F, Berutti R, Piras MG, Mulas A, Zoledziewska M, Marongiu M, Sorokin EP, Hess GT, Smith KS, Busonero F, Maschio A, Steri M, Sidore C, Sanna S, Fiorillo E, Bassik MC, Sawcer SJ, Battle A, Novembre J, Jones C, Angius A, Abecasis GR, Schlessinger D, Cucca F, and Montgomery SB
- Subjects
- Alternative Splicing, Chromosome Mapping, Family Health, Female, Genetic Predisposition to Disease genetics, Genetics, Population, Genotype, Humans, Italy, Male, Polymorphism, Single Nucleotide, Transcription Initiation Site, Gene Expression Profiling methods, Genetic Variation, Genome-Wide Association Study methods, Quantitative Trait Loci genetics
- Abstract
Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.