1. Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants.
- Author
-
Sarwar M, Anjum S, Alam MW, Ali Q, Ayyub CM, Haider MS, Ashraf MI, and Mahboob W
- Subjects
- Antioxidants metabolism, Antioxidants pharmacology, Fatty Alcohols, Proline metabolism, Capsicum metabolism, Salinity
- Abstract
Potential role of triacontanol applied as a foliar treatment to ameliorate the adverse effects of salinity on hot pepper plants was evaluated. In this pot experiment, hot pepper plants under 75 mM NaCl stress environment were subjected to foliar application of 25, 50, and 75 µM triacontanol treatments; whereas, untreated plants were taken as control. Salt stress had a significant impact on morphological characteristics, photosynthetic pigments, gas exchange attributes, MDA content, antioxidants activities, electrolytes leakage, vitamin C, soluble protein, and proline contents. All triacontanol treatments significantly mitigated the adversative effects of salinity on hot pepper plants; however, foliar application triacontanol at 75 µM had considerably improved the growth of hot pepper plants in terms of plant height, shoot length, leaf area, plant fresh/dry biomasses by modulating above mentioned physio-biochemical traits. While, improvement in gas exchange properties, chlorophyll, carotenoid contents, increased proline contents coupled with higher SOD and CAT activities were observed in response to 75 µM triacontanol followed by 50 µM triacontanol treatment. MDA and H
2 O2 contents were decreased significantly in hot pepper plants sprayed with 75 µM triacontanol followed by 50 µM triacontanol foliar treatment. Meanwhile, root and shoot lengths were maximum in 50 µM triacontanol sprayed hot pepper plants along with enhanced APX activity on exposure to salt stress. In crux, exogenous application triacontanol treatments improved hot pepper performance under salinity, however,75 µM triacontanol treatment evidently was more effective in mitigating the lethal impact of saline stress via controlling the ROS generation and increment in antioxidant enzyme activities., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF