1. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil
- Author
-
Chiara Pistocchi, Emmanuel Frossard, Michael S. Massey, Peter M. Vitousek, Federica Tamburini, Ruben Kretzschmar, Julian Helfenstein, Oliver A. Chadwick, Christian von Sperber, Institute of Agricultural Sciences, Ecole Polytechnique Fédérale de Zurich, Institute of Crop Science and Resource Conservation [Bonn], Rheinische Friedrich-Wilhelms-Universität Bonn, McGill University = Université McGill [Montréal, Canada], Department of Earth and Environmental Sciences, Université Catholique de Louvain = Catholic University of Louvain (UCL), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), University of California [Santa Barbara] (UCSB), University of California, Department of Biology, Stanford University, Swiss National Science Foundation (Project number 200021_162422), and U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515
- Subjects
010504 meteorology & atmospheric sciences ,Science ,media_common.quotation_subject ,General Physics and Astronomy ,chemistry.chemical_element ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,chemistry.chemical_compound ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Life Science ,lcsh:Science ,0105 earth and related environmental sciences ,media_common ,Multidisciplinary ,Chemistry ,Phosphorus ,Extraction (chemistry) ,Biogeochemistry ,04 agricultural and veterinary sciences ,General Chemistry ,Phosphorus cycling ,15. Life on land ,Phosphate ,Speciation ,Environmental chemistry ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,lcsh:Q ,Cycling - Abstract
Current understanding of phosphorus (P) cycling in soils can be enhanced by integrating previously discrete findings concerning P speciation, exchange kinetics, and the underlying biological and geochemical processes. Here, we combine sequential extraction with P K-edge X-ray absorption spectroscopy and isotopic methods (33P and 18O in phosphate) to characterize P cycling on a climatic gradient in Hawaii. We link P pools to P species and estimate the turnover times for commonly considered P pools. Dissolved P turned over in seconds, resin-extractable P in minutes, NaOH-extractable inorganic P in weeks to months, and HCl-extractable P in years to millennia. Furthermore, we show that in arid-zone soils, some primary mineral P remains even after 150 ky of soil development, whereas in humid-zone soils of the same age, all P in all pools has been biologically cycled. The integrative information we provide makes possible a more dynamic, process-oriented conceptual model of P cycling in soils., Our understanding of phosphorus (P) cycling in soils, a basis for many ecosystem services, has been limited by the complexity of P forms and processes. Here the authors use spectroscopic and isotopic techniques to estimate turnover times of P pools and tease apart biologically-driven and geochemically-driven P fluxes.
- Published
- 2018
- Full Text
- View/download PDF