7 results on '"Godley, BJ"'
Search Results
2. Investigating the presence of microplastics in demersal sharks of the North-East Atlantic.
- Author
-
Parton KJ, Godley BJ, Santillo D, Tausif M, Omeyer LCM, and Galloway TS
- Abstract
Microplastic pollution is ubiquitous in the marine environment and is ingested by numerous marine species. Sharks are an understudied group regarding their susceptibility to microplastic ingestion. Here, we provide evidence of ingestion of microplastic and other anthropogenic fibres in four demersal sharks species found in the waters of the United Kingdom and investigate whether body burdens of contamination vary according to species, sex or size. Sharks were collected from the North-East Atlantic. Stomachs and digestive tracts of 46 sharks of 4 species were examined and 67% of samples contained at least one contaminant particle. Although we acknowledge modest sample size, estimated particle burden increased with body size but did not vary systematically with sex or species. A total of 379 particles were identified, leading to median estimates ranging from 2 to 7.5 ingested contaminants per animal for the 4 species. The majority were fibrous in nature (95%) and blue (88%) or black (9%) in colour. A subsample of contaminants (N = 62) were subject to FT-IR spectroscopy and polymers identified as: synthetic cellulose (33.3%), polypropylene (25%), polyacrylamides (10%) and polyester (8.3%). The level of risk posed to shark species by this level of contamination is unknown. Nevertheless, this study presents the first empirical evidence and an important baseline for ingestion of microplastics and other anthropogenic fibres in native UK shark species and highlights the pervasive nature of these pollutants.
- Published
- 2020
- Full Text
- View/download PDF
3. Spatio-temporal genetic tagging of a cosmopolitan planktivorous shark provides insight to gene flow, temporal variation and site-specific re-encounters.
- Author
-
Lieber L, Hall G, Hall J, Berrow S, Johnston E, Gubili C, Sarginson J, Francis M, Duffy C, Wintner SP, Doherty PD, Godley BJ, Hawkes LA, Witt MJ, Henderson SM, de Sabata E, Shivji MS, Dawson DA, Sims DW, Jones CS, and Noble LR
- Subjects
- Animal Migration, Animals, Atlantic Ocean, Conservation of Natural Resources, Female, Gene Flow, Genetic Variation, Genetics, Population, Ireland, Male, Microsatellite Repeats, Population Density, Seasons, Spatio-Temporal Analysis, Sharks genetics, Sharks physiology
- Abstract
Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (N
e ) of 382 (CI = 241-830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics.- Published
- 2020
- Full Text
- View/download PDF
4. Diet-related selectivity of macroplastic ingestion in green turtles (Chelonia mydas) in the eastern Mediterranean.
- Author
-
Duncan EM, Arrowsmith JA, Bain CE, Bowdery H, Broderick AC, Chalmers T, Fuller WJ, Galloway TS, Lee JH, Lindeque PK, Omeyer LCM, Snape RTE, and Godley BJ
- Subjects
- Animal Feed analysis, Animals, Diet, Eating, Feeding Behavior, Mediterranean Region, Plastics metabolism, Turtles physiology
- Abstract
Understanding the drivers of key interactions between marine vertebrates and plastic pollution is now considered a research priority. Sea turtles are primarily visual predators, with the ability to discriminate according to colour and shape; therefore these factors play a role in feeding choices. Classification methodologies of ingested plastic currently do not record these variables, however here, refined protocols allow us to test the hypothesis that plastic is selectively ingested when it resembles the food items of green turtles (Chelonia mydas). Turtles in the eastern Mediterranean displayed strong diet-related selectivity towards certain types (sheet and threadlike), colours (black, clear and green) and shapes (linear items strongly preferred) of plastic when compared to the environmental baseline of plastic beach debris. There was a significant negative relationship between size of turtle (curved carapace length) and number/mass of plastic pieces ingested, which may be explained through naivety and/or ontogenetic shifts in diet. Further investigation in other species and sites are needed to more fully ascertain the role of selectivity in plastic ingestion in this marine vertebrate group.
- Published
- 2019
- Full Text
- View/download PDF
5. Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?
- Author
-
Nelms SE, Barnett J, Brownlow A, Davison NJ, Deaville R, Galloway TS, Lindeque PK, Santillo D, and Godley BJ
- Subjects
- Animals, Ecosystem, Environmental Monitoring, Microplastics chemistry, Plastics chemistry
- Abstract
Plastic pollution represents a pervasive and increasing threat to marine ecosystems worldwide and there is a need to better understand the extent to which microplastics (<5 mm) are ingested by high trophic-level taxa, such as marine mammals. Here, we perform a comprehensive assessment by examining whole digestive tracts of 50 individuals from 10 species whilst operating strict contamination controls. Microplastics were ubiquitous with particles detected in every animal examined. The relatively low number per animal (mean = 5.5) suggests these particles are transitory. Stomachs, however, were found to contain a greater number than intestines, indicating a potential site of temporary retention. The majority of particles were fibres (84%) while the remaining 16% was fragments. Particles were mainly blue and black (42.5% and 26.4%) in colour and Nylon was the most prevalent (60%) polymer type. A possible relationship was found between the cause of death category and microplastic abundance, indicating that animals that died due to infectious diseases had a slightly higher number of particles than those that died of trauma and other drivers of mortality. It is not possible, however, to draw any firm conclusions on the potential biological significance of this observation and further research is required to better understand the potential chronic effects of microplastic exposure on animal health, particularly as marine mammals are widely considered important sentinels for the implications of pollution for the marine environment.
- Published
- 2019
- Full Text
- View/download PDF
6. Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic.
- Author
-
Doherty PD, Baxter JM, Gell FR, Godley BJ, Graham RT, Hall G, Hall J, Hawkes LA, Henderson SM, Johnson L, Speedie C, and Witt MJ
- Subjects
- Africa, Northern, Animals, Denmark, Satellite Communications, Scotland, Seasons, Spain, United Kingdom, Animal Migration physiology, Sharks physiology
- Abstract
Animal migration is ubiquitous in nature with individuals within a population often exhibiting varying movement strategies. The basking shark (Cetorhinus maximus) is the world's second largest fish species, however, a comprehensive understanding of their long-term wider-ranging movements in the north-east Atlantic is currently lacking. Seventy satellite tags were deployed on basking sharks over four years (2012-2015) off the west coast of Scotland and the Isle of Man. Data from 28 satellite tags with attachment durations of over 165 days reveal post-summer ranging behaviours. Tagged sharks moved a median minimum straight-line distance of 3,633 km; achieving median displacement of 1,057 km from tagging locations. Tagged individuals exhibited one of three migration behaviours: remaining in waters of UK, Ireland and the Faroe Islands; migrating south to the Bay of Biscay or moving further south to waters off the Iberian Peninsula, and North Africa. Sharks used both continental shelf areas and oceanic habitats, primarily in the upper 50-200 m of the water column, spanning nine geo-political zones and the High Seas, demonstrating the need for multi-national cooperation in the management of this species across its range.
- Published
- 2017
- Full Text
- View/download PDF
7. Underwater noise levels in UK waters.
- Author
-
Merchant ND, Brookes KL, Faulkner RC, Bicknell AW, Godley BJ, and Witt MJ
- Abstract
Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). Field measurements were made during 2013-2014 at twelve sites around the UK. Median noise levels ranged from 81.5-95.5 dB re 1 μPa for one-third octave bands from 63-500 Hz. Noise exposure varied considerably, with little anthropogenic influence at the Celtic Sea site, to several North Sea sites with persistent vessel noise. Comparison of acoustic metrics found that the RMS level (conventionally used to represent the mean) was highly skewed by outliers, exceeding the 97
th percentile at some frequencies. We conclude that environmental indicators of anthropogenic noise should instead use percentiles, to ensure statistical robustness. Power analysis indicated that at least three decades of continuous monitoring would be required to detect trends of similar magnitude to historic rises in noise levels observed in the Northeast Pacific.- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.