1. Cost-reduction strategy to culture patient derived bladder tumor organoids.
- Author
-
Sisakht MM, Gholizadeh F, Hekmatirad S, Mahmoudi T, Montazeri S, Sharifi L, Daemi H, Romal S, Yazdi MH, Faramarzi MA, Shahverdi AR, and Hamidieh AA
- Subjects
- Humans, Culture Media, Conditioned pharmacology, Cell Culture Techniques methods, Cell Proliferation drug effects, Hydrogels chemistry, Organoids drug effects, Organoids metabolism, Urinary Bladder Neoplasms pathology, Urinary Bladder Neoplasms metabolism, Alginates chemistry, Alginates pharmacology
- Abstract
Organoids as self-organized structure derived from stem cells can recapitulate the function of an organ in miniature form which have developed great potential for clinical translation, drug screening and personalized medicine. Nevertheless, the majority of patient-derived organoids (PDOs) are currently being cultured in the basement membrane matrices (BMMs), which are constrained by xenogeneic origin, batch-to-batch variability, cost, and complexity. Besides, organoid culture relies on biochemical signals provided by various growth factors in the composition of medium. We propose sodium alginate hydrogel scaffold in addition to the fibroblast conditioned medium (FCM)-enriched culture medium that is inexpensive and easily amenable to clinical applications for the culture of bladder cancer PDOs. PDOs grown in sodium alginate and FCM based medium have proliferation potential, growth rate, and gene expression that are similar to PDOs cultured in BME. According to the results, sodium alginate has substantial mechanical properties and reduces variance in early passage bladder tumor organoid cultures collected from patients. Furthermore, using FCM based medium as an alternative solution to eliminate some essential growth factors can be considered, especially for low-resource situation and develop cost effective tumor organoids., Competing Interests: Declarations. Competing interests: The authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF