1. 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) induces apoptosis in breast cancer cells through inhibiting of Mcl-1 expression.
- Author
-
Kuo YH, Lai TC, Chang CH, Hsieh HC, Yang FM, and Hu MC
- Subjects
- Female, Humans, Apoptosis, Cell Line, Tumor, Myeloid Cell Leukemia Sequence 1 Protein genetics, Breast Neoplasms drug therapy, Dichlororibofuranosylbenzimidazole pharmacology
- Abstract
The effective treatment of breast cancer remains a profound clinical challenge, especially due to drug resistance and metastasis which unfortunately arise in many patients. The transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), as a selective inhibitor of cyclin-dependent kinase 9, was shown to be effective in inducing apoptosis in various hematopoietic malignancies. However, the anticancer efficacy of DRB against breast cancer is still unclear. Herein, we demonstrated that administration of DRB to the breast cancer cell line led to the inhibition of cellular proliferation and induction of the typical signs of apoptotic cells, including the increases in Annexin V-positive cells, DNA fragmentation, and activation of caspase-7, caspase-9, and poly (ADP ribose) polymerase (PARP). Treatment of DRB resulted in a rapid decline in the myeloid cell leukemia 1 (Mcl-1) protein, whereas levels of other antiapoptotic proteins did not change. Overexpression of Mcl-1 decreased the DRB-induced PARP cleavage, whereas knockdown of Mcl-1 enhanced the effects of DRB on PARP activation, indicating that loss of Mcl-1 accounts for the DRB-mediated apoptosis in MCF-7 cells, but not in T-47D. Furthermore, we found that co-treatment of MCF-7 cells with an inhibitor of AKT (LY294002) or an inhibitor of the proteasome (MG-132) significantly augmented the DRB-induced apoptosis. These data suggested that DRB in combination with LY294002 or MG-132 may have a greater therapeutic potency against breast cancer cells., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF