1. Influence of special features of the gradient structure formation during severe plastic deformation of alloys with different types of a crystalline lattice
- Author
-
G. N. Aleshin, A. G. Raab, Nikolai K. Tsenev, I. S. Kodirov, and Georgy I. Raab
- Subjects
010302 applied physics ,Materials science ,Structure formation ,0103 physical sciences ,02 engineering and technology ,Crystal structure ,Composite material ,Severe plastic deformation ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences - Abstract
Problem Statement (Relevance): The paper describes some features and prospective benefits of deformation by methods of drawing with shear (SD) and high pressure torsion (HPT) in a temperature range of dynamic strain aging (DSA) effect, which allow receiving a high complex of physical and mechanical properties. Objectives: The study aims to investigate and analyze features of the structure formation with the combined application of severe plastic deformation (SPD) and the DSA effect during deformation by drawing with shear and high pressure torsion, to establish patterns of the gradient structure formation. Methods Applied: 1. Computer simulation in Deform 3D software to investigate the stress-strain state on materials with various types of a crystalline lattice: copper grade M1 (FCC), Steel 10 (BCC) and titanium VT1-0 (HCP) and a further comparison with experimental results. 2. Microhardness measurement 3. Scanning and transmission electron microscopy. Originality: This research resulted in investigation of the combined effect of the DSA effect and SPD on the gradient structure formation and mechanical properties of metals with various crystalline lattices. Findings: the paper presents the results of the study of the structure formation during non-monotonous plastic deformation of the alloys (steel 10, copper and titanium) with various crystalline lattice types by SD, as well as ECAP and HPT of low-carbon steel in the temperature range of the DSA effect. Deformation mechanisms and features of the deformation behavior on a mesoscopic scale under various deformation treatment modes are analyzed. The temperature range of the DSA effect in steel 10 under ECAP and the fact of the gradient structure formation under HPT are established. Practical Relevance: The study helped to obtain data that can be used to choose the optimal deformation treatment mode with the DSA effect.
- Published
- 2019
- Full Text
- View/download PDF