1. 1,4,5-Inositol trisphosphate-operated intracellular Ca(2+) stores and angiotensin-II/endothelin-1 signaling pathway are functional in human embryonic stem cell-derived cardiomyocytes.
- Author
-
Sedan O, Dolnikov K, Zeevi-Levin N, Leibovich N, Amit M, Itskovitz-Eldor J, and Binah O
- Subjects
- Animals, Cells, Cultured, Enzyme Inhibitors pharmacology, Humans, Inositol 1,4,5-Trisphosphate Receptors metabolism, Mice, Models, Biological, Receptors, Adrenergic, beta metabolism, Signal Transduction, Angiotensin II metabolism, Calcium metabolism, Embryonic Stem Cells cytology, Endothelin-1 metabolism, Myocytes, Cardiac metabolism
- Abstract
On the basis of previous findings suggesting that in human embryonic stem cell-derived cardiomyocytes (hESC-CM) the sarcoplasmic reticulum Ca(2+)-induced release of calcium machinery is either absent or immature, in the present study we tested the hypothesis that hESC-CM contain fully functional 1,4,5-inositol trisphosphate (1,4,5-IP(3))-operated intracellular Ca(2+) ([Ca(2+)](i)) stores that can be mobilized upon appropriate physiological stimuli. To test this hypothesis we investigated the effects of angiotensin-II (AT-II) and endothelin-1 (ET-1), which activate the 1,4,5-IP(3) pathway, on [Ca(2+)](i) transients and contractions in beating clusters of hESC-CM. Our major findings were that in paced hESC-CM both AT-II and ET-1 (10(-9) to 10(-7) M) increased the contraction amplitude and the maximal rates of contraction and relaxation. In addition, AT-II (10(-9) to 10(-7) M) increased the [Ca(2+)](i) transient amplitude. The involvement of 1,4,5-IP(3)-dependent intracellular Ca(2+) release in the inotropic effect of AT-II was supported by the findings that (a) hESC-CM express AT-II, ET-1, and 1,4,5-IP(3) receptors determined by immunofluorescence staining, and (b) the effects of AT-II were blocked by 2 microM 2-aminoethoxyphenyl borate (a 1,4,5-IP(3) receptor blocker) and U73122 (a phospholipase C blocker). In conclusion, these findings demonstrate for the first time that hESC-CM exhibit functional AT-II and ET-1 signaling pathways, as well as 1,4,5-IP(3)-operated releasable Ca(2+) stores.
- Published
- 2008
- Full Text
- View/download PDF