98 results on '"Miller, Bruce L."'
Search Results
2. Symptoms of neurodegenerative diseases
- Author
-
Laforce, Robert, primary, Lehmann, Manja, additional, Macoir, Joël, additional, Poulin, Stéphane, additional, Roy, Martin, additional, Soucy, Jean-Paul, additional, Verret, Louis, additional, Miller, Bruce L., additional, and Bouchard, Rémi W., additional
- Published
- 2015
- Full Text
- View/download PDF
3. Frontotemporal Dementia
- Author
-
Miller, Bruce L., primary
- Published
- 2014
- Full Text
- View/download PDF
4. The Clinical Syndrome of bvFTD
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
5. The Clinical Syndrome of nfvPPA
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
6. Related Disorders: Corticobasal Degeneration and Progressive Supranuclear Palsy
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
7. The Clinical Syndrome of svPPA
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
8. Treatments
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
9. History and Nomenclature
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
10. FTD Genes
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
11. Related Disorders: FTD-ALS
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
12. A Primer of FTLD Neuropathology
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
13. FTD Reflections on Psychology and Philosophy
- Author
-
Miller, Bruce L., primary
- Published
- 2013
- Full Text
- View/download PDF
14. A Cognitive and Behavioral Neurological Approach to Aesthetics
- Author
-
Miller, Zachary A., primary and Miller, Bruce L., additional
- Published
- 2011
- Full Text
- View/download PDF
15. Frontotemporal Dementia
- Author
-
Chao, Steven Z., primary, Viskontas, Indre, additional, and Miller, Bruce L., additional
- Published
- 2011
- Full Text
- View/download PDF
16. Disorders of the Self in Dementia
- Author
-
SEELEY, WILLIAM W., primary and MILLER, BRUCE L., additional
- Published
- 2005
- Full Text
- View/download PDF
17. Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy
- Author
-
Alzheimer's Research UK, Economic and Social Research Council (UK), Engineering and Physical Sciences Research Council (UK), Alzheimer Society of Canada, Brain Research Trust, Wolfson Foundation, National Institute for Health Research (UK), National Institutes of Health (US), European Commission, Firth, Nicholas C., Primativo, Silvia, Marinescu, Razvan-Valentin, Shakespeare, Timothy J., Suárez-González, Aida, Lehmann, Manja, Carton, Amelia, Ocal, Dilek, Pavisic, Ivanna, Paterson, Ross W., Slattery, Catherine F., Foulkes, Alexander J. M., Ridha, Basil H., Gil-Néciga, Eulogio, Oxtoby, Neil P., Young, Alexandra L., Modat, Marc, Cardoso, M. Jorge, Ourselin, Sebastien, Ryan, Natalie S., Miller, Bruce L., Rabinovici, Gil D., Warrington, Elizabeth K., Rossor, Martin N., Fox, Nick C., Warren, Jason D., Alexander, Daniel C., Schott, Jonathan M., Yong, Keir X. X., Crutch, Sebastian J., Alzheimer's Research UK, Economic and Social Research Council (UK), Engineering and Physical Sciences Research Council (UK), Alzheimer Society of Canada, Brain Research Trust, Wolfson Foundation, National Institute for Health Research (UK), National Institutes of Health (US), European Commission, Firth, Nicholas C., Primativo, Silvia, Marinescu, Razvan-Valentin, Shakespeare, Timothy J., Suárez-González, Aida, Lehmann, Manja, Carton, Amelia, Ocal, Dilek, Pavisic, Ivanna, Paterson, Ross W., Slattery, Catherine F., Foulkes, Alexander J. M., Ridha, Basil H., Gil-Néciga, Eulogio, Oxtoby, Neil P., Young, Alexandra L., Modat, Marc, Cardoso, M. Jorge, Ourselin, Sebastien, Ryan, Natalie S., Miller, Bruce L., Rabinovici, Gil D., Warrington, Elizabeth K., Rossor, Martin N., Fox, Nick C., Warren, Jason D., Alexander, Daniel C., Schott, Jonathan M., Yong, Keir X. X., and Crutch, Sebastian J.
- Abstract
Posterior cortical atrophy is a clinico-radiological syndrome characterized by progressive decline in visual processing and atrophy of posterior brain regions. With the majority of cases attributable to Alzheimer’s disease and recent evidence for genetic risk factors specifically related to posterior cortical atrophy, the syndrome can provide important insights into selective vulnerability and phenotypic diversity. The present study describes the first major longitudinal investigation of posterior cortical atrophy disease progression. Three hundred and sixty-one individuals (117 posterior cortical atrophy, 106 typical Alzheimer’s disease, 138 controls) fulfilling consensus criteria for posterior cortical atrophy-pure and typical Alzheimer’s disease were recruited from three centres in the UK, Spain and USA. Participants underwent up to six annual assessments involving MRI scans and neuropsychological testing. We constructed longitudinal trajectories of regional brain volumes within posterior cortical atrophy and typical Alzheimer’s disease using differential equation models. We compared and contrasted the order in which regional brain volumes become abnormal within posterior cortical atrophy and typical Alzheimer’s disease using event-based models. We also examined trajectories of cognitive decline and the order in which different cognitive tests show abnormality using the same models. Temporally aligned trajectories for eight regions of interest revealed distinct (P < 0.002) patterns of progression in posterior cortical atrophy and typical Alzheimer’s disease. Patients with posterior cortical atrophy showed early occipital and parietal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion leading to tissue loss of comparable extent later. Hippocampal, entorhinal and frontal regions underwent a lower rate of change and never approached the extent of posterior cortical involvement. Patients with typical Alzheimer’s disease showed early h
- Published
- 2019
18. Frontotemporal lobar degeneration targets brain regions linked to expression of recently evolved genes.
- Author
-
Pasquini L, Pereira FL, Seddighi S, Zeng Y, Wei Y, Illán-Gala I, Vatsavayai SC, Friedberg A, Lee AJ, Brown JA, Spina S, Grinberg LT, Sirkis DW, Bonham LW, Yokoyama JS, Boxer AL, Kramer JH, Rosen HJ, Humphrey J, Gitler AD, Miller BL, Pollard KS, Ward ME, and Seeley WW
- Subjects
- Humans, Male, Female, Aged, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Middle Aged, tau Proteins genetics, tau Proteins metabolism, Atrophy genetics, Animals, Evolution, Molecular, Gene Expression genetics, Frontotemporal Lobar Degeneration genetics, Frontotemporal Lobar Degeneration metabolism, Brain metabolism, Brain pathology
- Abstract
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
19. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease.
- Author
-
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, and Rabinovici GD
- Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations,
11 C-labelled Pittsburgh Compound B-PET and structural MRI.18 F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical18 F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater18 F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and18 F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease., Competing Interests: Y.L., E.T., B.G., and G.W. report no conflict of interest relevant to this manuscript. J.J.L.-G.’s research is supported by NIH-NIA (K01AG073526), the Alzheimer’s Association (AARFD-21-851415, SG-20-690363), the Michael J. Fox Foundation (MJFF-020770), the Foundation for Barnes-Jewish Hospital and the McDonnell Academy. T.L.S.B., MD, PhD, has investigator-initiated research funding from the NIH, the Alzheimer’s Association, the Barnes-Jewish Hospital Foundation and Avid Radiopharmaceuticals. T.L.S.B. participates as a site investigator in clinical trials sponsored by Avid Radiopharmaceuticals, Eli Lilly and Company, Biogen, Eisai, Janssen and F. Hoffmann-La Roche, Ltd. She serves as an unpaid consultant to Eisai and Siemens. She is on the Speaker’s Bureau for Biogen. J.C.M., MD, is the Friedman Distinguished Professor of Neurology, Director, Knight ADRC; Associate Director of DIAN and Founding Principal Investigator of DIAN. He is funded by NIH grants # P30 AG066444, P01AG003991, P01AG026276, U19 AG032438 and U19 AG024904. Neither J.C.M. nor his family owns stock or has equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company. Carlos Cruchaga, PhD, receives research support from Biogen, EISAI, Alector and Parabon. The funders of the study had no role in the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. Dr. Cruchaga is a member of the advisory board of Vivid Genetics, Halia Therapeutics and Adx Healthcare. G.S.D.’s research is supported by NIH (K23AG064029, U01AG057195 and U19AG032438), the Alzheimer’s Association and the Chan Zuckerberg Initiative. He serves as a consultant for Parabon NanoLabs, Inc., as a Topic Editor (Dementia) for DynaMed (EBSCO), and as the clinical director of the Anti-NMDA Receptor Encephalitis Foundation, Inc. (Canada; uncompensated). He is the co-project PI for a clinical trial in anti-NMDAR encephalitis, which receives support from Horizon Pharmaceuticals. He has developed educational materials for PeerView Media, Inc., and Continuing Education, Inc. He owns stock in ANI Pharmaceuticals. R.J.B., MD, is the director and principal investigator of the DIAN and DIAN-TU-001. He receives research support from the National Institute on Aging of the National Institutes of Health, DIAN-TU Trial Pharmaceutical Partners (Eli Lilly and Company, F. Hoffman-La Roche, Ltd. and Avid Radiopharmaceuticals), Alzheimer’s Association, GHR Foundation, Anonymous Organization, DIAN-TU Pharma Consortium (Active: Biogen, Eisai, Eli Lilly and Company, Janssen, F. Hoffmann-La Roche, Ltd./Genentech, United Neuroscience. Previous: AbbVie, Amgen, AstraZeneca, Forum, Mithridion, Novartis, Pfizer, Sanofi). He has been an invited speaker and consultant for AC Immune, F. Hoffman La Roche, Ltd. and Janssen and a consultant for Amgen and Eisai. J.L., MD, reports speaker fees from Bayer Vital, Biogen and Roche, consulting fees from Axon Neuroscience and Biogen and author fees from Thieme Medical Publishers and W. Kohlhammer GmbH Medical Publishers. In addition, he reports compensation for serving as chief medical officer for MODAG GmbH, is a beneficiary of the phantom share program of MODAG GmbH and is an inventor in a patent ‘Pharmaceutical Composition and Methods of Use’ (EP 22 159 408.8) filed by MODAG GmbH, all activities outside the submitted work. L.I. is currently a full-time employee of Eli Lilly and Company/Avid Radiopharmaceuticals and a minor shareholder of Eli Lilly and Company. His contribution to the work presented in this manuscript was performed while he was affiliated with the University of California San Francisco. G.D.R., MD, receives research support from NIA P30-AG062422, U01 AG057195, R35 AG072362, R56-AG075744, NINDS R21-NS120629, Alzheimer’s Association ZEN-21-848216, American College of Radiology, Rainwater Charitable Foundation, Shenandoah Foundation, Avid Radiopharmaceuticals, Life Molecular Imaging, GE HealthCare and Genentech. He has served as a consultant for Alector, Eli Lilly, Genentech, GE HealthCare, Roche, Johnson & Johnson and Merck. He serves as an associate editor for JAMA Neurology., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)- Published
- 2024
- Full Text
- View/download PDF
20. Abnormal gamma phase-amplitude coupling in the parahippocampal cortex is associated with network hyperexcitability in Alzheimer's disease.
- Author
-
Prabhu P, Morise H, Kudo K, Beagle A, Mizuiri D, Syed F, Kotegar KA, Findlay A, Miller BL, Kramer JH, Rankin KP, Garcia PA, Kirsch HE, Vossel K, Nagarajan SS, and Ranasinghe KG
- Abstract
While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients ( n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls ( n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology., Competing Interests: The authors of this manuscript do not have any conflicts of interest relevant to the content of this work., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
21. Clinical dimensions along the non-fluent variant primary progressive aphasia spectrum.
- Author
-
Illán-Gala I, Lorca-Puls DL, Tee BL, Ezzes Z, de Leon J, Miller ZA, Rubio-Guerra S, Santos-Santos M, Gómez-Andrés D, Grinberg LT, Spina S, Kramer JH, Wauters LD, Henry ML, Boxer AL, Rosen HJ, Miller BL, Seeley WW, Mandelli ML, and Gorno-Tempini ML
- Subjects
- Humans, Aphasia, Broca pathology, Dysarthria, Language, Speech, Apraxias pathology, Aphasia, Primary Progressive, Primary Progressive Nonfluent Aphasia
- Abstract
It is debated whether primary progressive apraxia of speech (PPAOS) and progressive agrammatic aphasia (PAA) belong to the same clinical spectrum, traditionally termed non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), or exist as two completely distinct syndromic entities with specific pathologic/prognostic correlates. We analysed speech, language and disease severity features in a comprehensive cohort of patients with progressive motor speech impairment and/or agrammatism to ascertain evidence of naturally occurring, clinically meaningful non-overlapping syndromic entities (e.g. PPAOS and PAA) in our data. We also assessed if data-driven latent clinical dimensions with aetiologic/prognostic value could be identified. We included 98 participants, 43 of whom had an autopsy-confirmed neuropathological diagnosis. Speech pathologists assessed motor speech features indicative of dysarthria and apraxia of speech (AOS). Quantitative expressive/receptive agrammatism measures were obtained and compared with healthy controls. Baseline and longitudinal disease severity was evaluated using the Clinical Dementia Rating Sum of Boxes (CDR-SB). We investigated the data's clustering tendency and cluster stability to form robust symptom clusters and employed principal component analysis to extract data-driven latent clinical dimensions (LCD). The longitudinal CDR-SB change was estimated using linear mixed-effects models. Of the participants included in this study, 93 conformed to previously reported clinical profiles (75 with AOS and agrammatism, 12 PPAOS and six PAA). The remaining five participants were characterized by non-fluent speech, executive dysfunction and dysarthria without apraxia of speech or frank agrammatism. No baseline clinical features differentiated between frontotemporal lobar degeneration neuropathological subgroups. The Hopkins statistic demonstrated a low cluster tendency in the entire sample (0.45 with values near 0.5 indicating random data). Cluster stability analyses showed that only two robust subgroups (differing in agrammatism, executive dysfunction and overall disease severity) could be identified. Three data-driven components accounted for 71% of the variance [(i) severity-agrammatism; (ii) prominent AOS; and (iii) prominent dysarthria]. None of these data-driven LCDs allowed an accurate prediction of neuropathology. The severity-agrammatism component was an independent predictor of a faster CDR-SB increase in all the participants. Higher dysarthria severity, reduced words per minute and expressive and receptive agrammatism severity at baseline independently predicted accelerated disease progression. Our findings indicate that PPAOS and PAA, rather than exist as completely distinct syndromic entities, constitute a clinical continuum. In our cohort, splitting the nfvPPA spectrum into separate clinical phenotypes did not improve clinical-pathological correlations, stressing the need for new biological markers and consensus regarding updated terminology and clinical classification., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
22. Enlarged perivascular spaces are associated with white matter injury, cognition and inflammation in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
- Author
-
Karvelas N, Oh B, Wang E, Cobigo Y, Tsuei T, Fitzsimons S, Younes K, Ehrenberg A, Geschwind MD, Schwartz D, Kramer JH, Ferguson AR, Miller BL, Silbert LC, Rosen HJ, and Elahi FM
- Abstract
Enlarged perivascular spaces have been previously reported in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, but their significance and pathophysiology remains unclear. We investigated associations of white matter enlarged perivascular spaces with classical imaging measures, cognitive measures and plasma proteins to better understand what enlarged perivascular spaces represent in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and whether radiographic measures of enlarged perivascular spaces would be of value in future therapeutic discovery studies for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Twenty-four individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and 24 age- and sex-matched controls were included. Disease status was determined based on the presence of NOTCH3 mutation. Brain imaging measures of white matter hyperintensity, brain parenchymal fraction, white matter enlarged perivascular space volumes, clinical and cognitive measures as well as plasma proteomics were used in models. White matter enlarged perivascular space volumes were calculated via a novel, semiautomated pipeline, and levels of 7363 proteins were quantified in plasma using the SomaScan assay. The relationship of enlarged perivascular spaces with global burden of white matter hyperintensity, brain atrophy, functional status, neurocognitive measures and plasma proteins was modelled with linear regression models. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and control groups did not exhibit differences in mean enlarged perivascular space volumes. However, increased enlarged perivascular space volumes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were associated with increased white matter hyperintensity volume (β = 0.57, P = 0.05), Clinical Dementia Rating Sum-of-Boxes score (β = 0.49, P = 0.04) and marginally with decreased brain parenchymal fraction (β = -0.03, P = 0.10). In interaction term models, the interaction term between cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease status and enlarged perivascular space volume was associated with increased white matter hyperintensity volume (β = 0.57, P = 0.02), Clinical Dementia Rating Sum-of-Boxes score (β = 0.52, P = 0.02), Mini-Mental State Examination score (β = -1.49, P = 0.03) and marginally with decreased brain parenchymal fraction (β = -0.03, P = 0.07). Proteins positively associated with enlarged perivascular space volumes were found to be related to leukocyte migration and inflammation, while negatively associated proteins were related to lipid metabolism. Two central hub proteins were identified in protein networks associated with enlarged perivascular space volumes: CXC motif chemokine ligand 8/interleukin-8 and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. The levels of CXC motif chemokine ligand 8/interleukin-8 were also associated with increased white matter hyperintensity volume (β = 42.86, P = 0.03), and levels of C-C motif chemokine ligand 2/monocyte chemoattractant protein 1 were further associated with decreased brain parenchymal fraction (β = -0.0007, P < 0.01) and Mini-Mental State Examination score (β = -0.02, P < 0.01) and increased Trail Making Test B completion time (β = 0.76, P < 0.01). No proteins were associated with all three studied imaging measures of pathology (brain parenchymal fraction, enlarged perivascular spaces, white matter hyperintensity). Based on associations uncovered between enlarged perivascular space volumes and cognitive functions, imaging and plasma proteins, we conclude that white matter enlarged perivascular space volumes may capture pathologies contributing to chronic brain dysfunction and degeneration in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy., Competing Interests: The authors report no competing interests., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
23. Neural basis of speech and grammar symptoms in non-fluent variant primary progressive aphasia spectrum.
- Author
-
Lorca-Puls DL, Gajardo-Vidal A, Mandelli ML, Illán-Gala I, Ezzes Z, Wauters LD, Battistella G, Bogley R, Ratnasiri B, Licata AE, Battista P, García AM, Tee BL, Lukic S, Boxer AL, Rosen HJ, Seeley WW, Grinberg LT, Spina S, Miller BL, Miller ZA, Henry ML, Dronkers NF, and Gorno-Tempini ML
- Subjects
- Humans, Aphasia, Broca pathology, Prospective Studies, Dysarthria, Speech, Cross-Sectional Studies, Apraxias pathology, Aphasia, Primary Progressive pathology, Primary Progressive Nonfluent Aphasia complications
- Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
24. Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease.
- Author
-
Llibre-Guerra JJ, Iaccarino L, Coble D, Edwards L, Li Y, McDade E, Strom A, Gordon B, Mundada N, Schindler SE, Tsoy E, Ma Y, Lu R, Fagan AM, Benzinger TLS, Soleimani-Meigooni D, Aschenbrenner AJ, Miller Z, Wang G, Kramer JH, Hassenstab J, Rosen HJ, Morris JC, Miller BL, Xiong C, Perrin RJ, Allegri R, Chrem P, Surace E, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Fox NC, Day G, Gorno-Tempini ML, Boxer AL, La Joie R, Rabinovici GD, and Bateman R
- Abstract
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t -tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline ( P = 0.006) and 46.1% versus 25.4% at last visit ( P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency ( P < 0.001), Trail Making Test Part B ( P < 0.001) and digit span ( P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points ( P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels ( P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design., Competing Interests: J.J.L.-G.’s research is supported by NIH-NIA (K01AG073526), the Alzheimer’s Association (AARFD-21-851415 and SG-20-690363), the Michael J. Fox Foundation (MJFF-020770), the Foundation for Barnes-Jewish Hospital and the McDonnell Academy. A.M.F., PhD, is the Biomarker Core Leader of the DIAN-TU. She is a member of the scientific advisory boards for Roche Diagnostics, Genentech and AbbVie and also consults for Araclon/Grifols, DiademRes, DiamiR and Otsuka Pharmaceuticals. T.L.S.B., MD, PhD, has investigator-initiated research funding from the NIH, the Alzheimer’s Association, the Barnes-Jewish Hospital Foundation and Avid Radiopharmaceuticals. T.L.S.B. participates as a site investigator in clinical trials sponsored by Avid Radiopharmaceuticals, Eli Lilly and Company, Biogen, Eisai, Jaansen and F. Hoffmann-La Roche, Ltd. She serves as an unpaid consultant to Eisai and Siemens. She is on the Speaker’s Bureau for Biogen. J.C.M., MD, is the Friedman Distinguished Professor of Neurology, Director, Knight ADRC, Associate Director of DIAN and Founding Principal Investigator of DIAN. He is funded by NIH grants # P30 AG066444, P01AG003991, P01AG026276, U19 AG032438 and U19 AG024904. Neither J.C.M. nor his family owns stock or has equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company. A.J.A., PhD, has served as a consultant for Biogen Inc and H. Lundbeck HS. J.H., PhD, is a paid consultant for F. Hoffmann-La Roche, Ltd., Takeda, and Lundbeck and is on the Data Safety and Monitoring Board for Eisai. J.L., MD, reports speaker fees from Bayer Vital, Biogen and Roche, consulting fees from Axon Neuroscience and Biogen and author fees from Thieme Medical Publishers and W. Kohlhammer GmbH Medical Publishers. In addition, he reports compensation for serving as chief medical officer for MODAG GmbH, is a beneficiary of the phantom share program of MODAG GmbH and is an inventor in a patent ‘Pharmaceutical Composition and Methods of Use’ (EP 22 159 408.8) filed by MODAG GmbH, all activities outside the submitted work. L.I. is currently a full-time employee of Eli Lilly and Company/Avid Radiopharmaceuticals and a minor shareholder of Eli Lilly and Company. His contribution to the work presented in this manuscript was performed while he was affiliated with the University of California San Francisco. G.D.R., MD, receives research support from NIA P30-AG062422, U01-AG057195, R35 AG072362, R56-AG075744, NINDS R21-NS120629, Alzheimer’s Association ZEN-21-848216, American College of Radiology, Rainwater Charitable Foundation, Shenandoah Foundation, Avid Radiopharmaceuticals, Life Molecular Imaging, GE Healthcare and Genentech. He has served as a consultant for Alector, Eli Lilly, Genentech, GE Healthcare, Roche, Johnson & Johnson and Merck. He serves as associate editor for JAMA Neurology. All other authors report no conflict of interest relevant to this manuscript., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
25. Spared speech fluency is associated with increased functional connectivity in the speech production network in semantic variant primary progressive aphasia.
- Author
-
Montembeault M, Miller ZA, Geraudie A, Pressman P, Slegers A, Millanski C, Licata A, Ratnasiri B, Mandelli ML, Henry M, Cobigo Y, Rosen HJ, Miller BL, Brambati SM, Gorno-Tempini ML, and Battistella G
- Abstract
Semantic variant primary progressive aphasia is a clinical syndrome characterized by marked semantic deficits, anterior temporal lobe atrophy and reduced connectivity within a distributed set of regions belonging to the functional network associated with semantic processing. However, to fully depict the clinical signature of semantic variant primary progressive aphasia, it is necessary to also characterize preserved neural networks and linguistic abilities, such as those subserving speech production. In this case-control observational study, we employed whole-brain seed-based connectivity on task-free MRI data of 32 semantic variant primary progressive aphasia patients and 46 healthy controls to investigate the functional connectivity of the speech production network and its relationship with the underlying grey matter. We investigated brain-behaviour correlations with speech fluency measures collected through clinical tests (verbal agility) and connected speech (speech rate and articulation rate). As a control network, we also investigated functional connectivity within the affected semantic network. Patients presented with increased connectivity in the speech production network between left inferior frontal and supramarginal regions, independent of underlying grey matter volume. In semantic variant primary progressive aphasia patients, preserved (verbal agility) and increased (articulation rate) speech fluency measures correlated with increased connectivity between inferior frontal and supramarginal regions. As expected, patients demonstrated decreased functional connectivity in the semantic network (dependent on the underlying grey matter atrophy) associated with average nouns' age of acquisition during connected speech. Collectively, these results provide a compelling model for studying compensation mechanisms in response to disease that might inform the design of future rehabilitation strategies in semantic variant primary progressive aphasia., Competing Interests: The authors report no competing interests., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
26. Behavioural subphenotypes and their anatomic correlates in neurodegenerative disease.
- Author
-
Roy ARK, Datta S, Hardy E, Sturm VE, Kramer JH, Seeley WW, Rankin KP, Rosen HJ, Miller BL, and Perry DC
- Abstract
Patients with neurodegenerative disorders experience a range of neuropsychiatric symptoms. The neural correlates have been explored for many individual symptoms, such as apathy and disinhibition. Atrophy patterns have also been associated with broadly recognized syndromes that bring together multiple symptoms, such as the behavioural variant of frontotemporal dementia. There is substantial heterogeneity of symptoms, with partial overlap of behaviour and affected neuroanatomy across and within dementia subtypes. It is not well established if there are anatomically distinct behavioural subphenotypes in neurodegenerative disease. The objective of this study was to identify shared behavioural profiles in frontotemporal dementia-spectrum and Alzheimer's disease-related syndromes. Additionally, we sought to determine the underlying neural correlates of these symptom clusters. Two hundred and eighty-one patients diagnosed with one of seven different dementia syndromes, in addition to healthy controls and individuals with mild cognitive impairment, completed a 109-item assessment capturing the severity of a range of clinical behaviours. A principal component analysis captured distinct clusters of related behaviours. Voxel-based morphometry analyses were used to identify regions of volume loss associated with each component. Seven components were identified and interpreted as capturing the following behaviours: Component 1-emotional bluntness, 2-emotional lability and disinhibition, 3-neuroticism, 4-rigidity and impatience, 5-indiscriminate consumption, 6-psychosis and 7-Geschwind syndrome-related behaviours. Correlations with structural brain volume revealed distinct neuroanatomical patterns associated with each component, including after controlling for diagnosis, suggesting that localized neurodegeneration can lead to the development of behavioural symptom clusters across various dementia syndromes., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
27. Amyloid, tau and metabolic PET correlates of cognition in early and late-onset Alzheimer's disease.
- Author
-
Tanner JA, Iaccarino L, Edwards L, Asken BM, Gorno-Tempini ML, Kramer JH, Pham J, Perry DC, Possin K, Malpetti M, Mellinger T, Miller BL, Miller Z, Mundada NS, Rosen HJ, Soleimani-Meigooni DN, Strom A, La Joie R, and Rabinovici GD
- Subjects
- Female, Male, Humans, Fluorodeoxyglucose F18 metabolism, tau Proteins metabolism, Cognition, Brain pathology, Amyloid metabolism, Amyloidogenic Proteins metabolism, Positron-Emission Tomography, Biomarkers metabolism, Alzheimer Disease pathology, Cognitive Dysfunction pathology
- Abstract
Early-onset (age < 65) Alzheimer's disease is associated with greater non-amnestic cognitive symptoms and neuropathological burden than late-onset disease. It is not fully understood whether these groups also differ in the associations between molecular pathology, neurodegeneration and cognitive performance. We studied amyloid-positive patients with early-onset (n = 60, mean age 58 ± 4, MMSE 21 ± 6, 58% female) and late-onset (n = 53, mean age 74 ± 6, MMSE 23 ± 5, 45% female) Alzheimer's disease who underwent neurological evaluation, neuropsychological testing, 11C-Pittsburgh compound B PET (amyloid-PET) and 18F-flortaucipir PET (tau-PET). 18F-fluorodeoxyglucose PET (brain glucose metabolism PET) was also available in 74% (n = 84) of participants. Composite scores for episodic memory, semantic memory, language, executive function and visuospatial domains were calculated based on cognitively unimpaired controls. Voxel-wise regressions evaluated correlations between PET biomarkers and cognitive scores and early-onset versus late-onset differences were tested with a PET × Age group interaction. Mediation analyses estimated direct and indirect (18F-fluorodeoxyglucose mediated) local associations between 18F-flortaucipir binding and cognitive scores in domain-specific regions of interest. We found that early-onset patients had higher 18F-flortaucipir binding in parietal, lateral temporal and lateral frontal cortex; more severe 18F-fluorodeoxyglucose hypometabolism in the precuneus and angular gyrus; and greater 11C-Pittsburgh compound B binding in occipital regions compared to late-onset patients. In our primary analyses, PET-cognition correlations did not meaningfully differ between age groups.18F-flortaucipir and 18F-fluorodeoxyglucose, but not 11C-Pittsburgh compound B, were significantly associated with cognition in expected domain-specific patterns in both age groups (e.g. left perisylvian/language, frontal/executive, occipital/visuospatial). 18F-fluorodeoxyglucose mediated the relationship between 18F-flortaucipir and cognition in both age groups across all domains except episodic memory in late-onset patients. Additional direct effects of 18F-flortaucipir were observed for executive function in all age groups, language in early-onset Alzheimer's disease and in the total sample and visuospatial function in the total sample. In conclusion, tau and neurodegeneration, but not amyloid, were similarly associated with cognition in both early and late-onset Alzheimer's disease. Tau had an association with cognition independent of neurodegeneration in language, executive and visuospatial functions in the total sample. Our findings support tau PET as a biomarker that captures both the clinical severity and molecular pathology specific to Alzheimer's disease across the broad spectrum of ages and clinical phenotypes in Alzheimer's disease., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
28. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia.
- Author
-
Younes K, Borghesani V, Montembeault M, Spina S, Mandelli ML, Welch AE, Weis E, Callahan P, Elahi FM, Hua AY, Perry DC, Karydas A, Geschwind D, Huang E, Grinberg LT, Kramer JH, Boxer AL, Rabinovici GD, Rosen HJ, Seeley WW, Miller ZA, Miller BL, Sturm VE, Rankin KP, and Gorno-Tempini ML
- Subjects
- Humans, Semantics, Atrophy, Magnetic Resonance Imaging, DNA-Binding Proteins, Neuropsychological Tests, Frontotemporal Dementia pathology, Frontotemporal Lobar Degeneration diagnostic imaging, Frontotemporal Lobar Degeneration pathology, Aphasia, Primary Progressive diagnostic imaging, Aphasia, Primary Progressive pathology
- Abstract
Focal anterior temporal lobe degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant anterior temporal lobe atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia and semantic dementia, patients with early right anterior temporal lobe atrophy are more difficult to diagnose as their symptoms are less well understood. Focal right anterior temporal lobe atrophy is associated with prominent emotional and behavioural changes, and patients often meet, or go on to meet, criteria for behavioural variant frontotemporal dementia. Uncertainty around early symptoms and absence of an overarching clinico-anatomical framework continue to hinder proper diagnosis and care of patients with right anterior temporal lobe disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with right anterior temporal lobe-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of behavioural variant frontotemporal dementia or semantic variant primary progressive aphasia and a structural MRI (n = 478). On the basis of neuroimaging criteria, we defined three patient groups: right anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the right anterior temporal lobe (n = 79) and left-predominant anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic and pathological profiles of these groups. In the right anterior temporal lobe-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%) and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and faces) and facial affect naming (despite preserved face perception) than the frontal- and left-predominant anterior temporal lobe-predominant groups. The clinical symptoms in the first 3 years of the disease alone were highly sensitive (81%) and specific (84%) differentiating right anterior temporal lobe-predominant from frontal-predominant groups. Frontotemporal lobar degeneration-transactive response DNA binding protein (84%) was the most common pathology of the right anterior temporal lobe-predominant group. Right anterior temporal lobe-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, 'semantic behavioural variant frontotemporal dementia', which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal right anterior temporal lobe degeneration as well as in vivo prediction of frontotemporal lobar degeneration-transactive response DNA binding protein pathology., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
29. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease.
- Author
-
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, Baker SL, Landau SM, Jagust WJ, Miller BL, Rosen HJ, Gorno-Tempini ML, Rabinovici GD, and La Joie R
- Subjects
- Amyloid metabolism, Apolipoprotein E4 genetics, Atrophy, Brain metabolism, Fluorodeoxyglucose F18, Humans, Magnetic Resonance Imaging, Positron-Emission Tomography methods, tau Proteins metabolism, Alzheimer Disease diagnostic imaging, Alzheimer Disease genetics, Cognitive Dysfunction diagnostic imaging, Cognitive Dysfunction genetics
- Abstract
Posterior cortical hypometabolism measured with 18F-fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts [University of California, San Francisco (UCSF), and Alzheimer's Disease Neuroimaging Initiative (ADNI)] underwent MRI and PET with FDG, amyloid-PET using 11C-Pittsburgh Compound-B, 18F-florbetapir or 18F-florbetaben, and 18F-flortaucipir tau-PET in 1 year. Standard uptake value ratios (SUVRs) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG standard uptake value ratios. On average, ADNI patients were older and were less impaired than the UCSF patients. Regional patterns of hypometabolism were similar between cohorts, although there were cohort differences in regional grey matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVRs (ΔR2 = 0.09 to 0.21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in the ADNI cohort (ΔR2 = 0.04, P = 0.008) but not for the UCSF (ΔR2 < 0.01, P = 0.52), and did not improve the inferior parietal models (ΔR2 < 0.01, P > 0.37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVRs at earlier disease stages (P = 0.06 in UCSF, P = 0.046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
30. Neuronal synchrony abnormalities associated with subclinical epileptiform activity in early-onset Alzheimer's disease.
- Author
-
Ranasinghe KG, Kudo K, Hinkley L, Beagle A, Lerner H, Mizuiri D, Findlay A, Miller BL, Kramer JH, Gorno-Tempini ML, Rabinovici GD, Rankin KP, Garcia PA, Kirsch HE, Vossel K, and Nagarajan SS
- Subjects
- Brain, Electroencephalography methods, Humans, Magnetoencephalography, Alzheimer Disease, Cognitive Dysfunction complications, Cognitive Dysfunction etiology
- Abstract
Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease. Using magnetoencephalography (MEG) at rest, we studied 30 Alzheimer's disease patients without subclinical epileptiform activity, 20 Alzheimer's disease patients with subclinical epileptiform activity and 35 age-matched controls. Presence of subclinical epileptiform activity was assessed in patients with Alzheimer's disease by long-term video-EEG and a 1-h resting MEG with simultaneous EEG. Using the resting-state source-space reconstructed MEG signal, in patients and controls we computed the global imaginary coherence in alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillatory frequencies. We found that Alzheimer's disease patients with subclinical epileptiform activity have greater reductions in alpha imaginary coherence and greater enhancements in delta-theta imaginary coherence than Alzheimer's disease patients without subclinical epileptiform activity, and that these changes can distinguish between Alzheimer's disease patients with subclinical epileptiform activity and Alzheimer's disease patients without subclinical epileptiform activity with high accuracy. Finally, a principal component regression analysis showed that the variance of frequency-specific neuronal synchrony predicts longitudinal changes in Mini-Mental State Examination in patients and controls. Our results demonstrate that quantitative neurophysiological measures are sensitive biomarkers of network hyperexcitability and can be used to improve diagnosis and to select appropriate patients for the right therapy in the next-generation clinical trials. The current results provide an integrative framework for investigating network hyperexcitability and network dysfunction together with cognitive and clinical correlates in patients with Alzheimer's disease., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
31. Diminished preparatory physiological responses in frontotemporal lobar degeneration syndromes.
- Author
-
Chen KH, Hua AY, Toller G, Lwi SJ, Otero MC, Haase CM, Rankin KP, Rosen HJ, Miller BL, and Levenson RW
- Abstract
Researchers typically study physiological responses either after stimulus onset or when the emotional valence of an upcoming stimulus is revealed. Yet, participants may also respond when they are told that an emotional stimulus is about to be presented even without knowing its valence. Increased physiological responding during this time may reflect a 'preparation for action'. The generation of such physiological responses may be supported by frontotemporal regions of the brain that are vulnerable to damage in frontotemporal lobar degeneration. We examined preparatory physiological responses and their structural and functional neural correlate in five frontotemporal lobar degeneration clinical subtypes (behavioural variant frontotemporal dementia, n = 67; semantic variant primary progressive aphasia, n = 35; non-fluent variant primary progressive aphasia, n = 30; corticobasal syndrome, n = 32; progressive supranuclear palsy, n = 30). Comparison groups included patients with Alzheimer's disease ( n = 56) and healthy controls ( n = 35). Preparatory responses were quantified as cardiac interbeat interval decreases (i.e. heart rate increases) from baseline to an 'instruction period', during which participants were told to watch the upcoming emotional film but not provided the film's valence. Patients' behavioural symptoms (apathy and disinhibition) were also evaluated via a caregiver-reported measure. Compared to healthy controls and Alzheimer's disease, the frontotemporal lobar degeneration group showed significantly smaller preparatory responses. When comparing each frontotemporal lobar degeneration clinical subtype with healthy controls and Alzheimer's disease, significant group differences emerged for behavioural variant frontotemporal dementia and progressive supranuclear palsy. Behavioural analyses revealed that frontotemporal lobar degeneration patients showed greater disinhibition and apathy compared to Alzheimer's disease patients. Further, these group differences in disinhibition (but not apathy) were mediated by patients' smaller preparatory responses. Voxel-based morphometry and resting-state functional MRI analyses revealed that across patients and healthy controls, smaller preparatory responses were associated with smaller volume and lower functional connectivity in a circuit that included the ventromedial prefrontal cortex and cortical and subcortical regions of the salience network. Diminished preparatory physiological responding in frontotemporal lobar degeneration may reflect a lack of preparation for actions that are appropriate for an upcoming situation, such as approaching or withdrawing from emotional stimuli. The ventromedial prefrontal cortex and salience network are critical for evaluating stimuli, thinking about the future, triggering peripheral physiological responses, and processing and interpreting interoceptive signals. Damage to these circuits in frontotemporal lobar degeneration may impair preparatory responses and help explain often-observed clinical symptoms such as disinhibition in these patients., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2022
- Full Text
- View/download PDF
32. Neuroanatomical correlations of visuospatial processing in primary progressive aphasia.
- Author
-
Tee BL, Watson Pereira C, Lukic S, Bajorek LP, Allen IE, Miller ZA, Casaletto KB, Miller BL, and Gorno-Tempini ML
- Abstract
Clinical phenotyping of primary progressive aphasia has largely focused on speech and language presentations, leaving other cognitive domains under-examined. This study investigated the diagnostic utility of visuospatial profiles and examined their neural basis among the three main primary progressive aphasia variants. We studied the neuropsychological performances of 118 primary progressive aphasia participants and 30 cognitively normal controls, across 11 measures of visuospatial cognition, and investigated their neural correlates via voxel-based morphometry analysis using visuospatial composite scores derived from principal component analysis. The principal component analysis identified three main factors: visuospatial-executive, visuospatial-memory and visuomotor components. Logopenic variant primary progressive aphasia performed significantly worst across all components; nonfluent/agrammatic variant primary progressive aphasia showed deficits in the visuospatial-executive and visuomotor components compared with controls; and the semantic variant primary progressive aphasia scored significantly lower than nonfluent/agrammatic variant primary progressive aphasia and control in the visuospatial-memory component. Grey matter volumes over the right parieto-occipital cortices correlated with visuospatial-executive performance; volumetric changes in the right anterior parahippocampal gyrus and amygdala were associated with visuospatial-memory function, and visuomotor composite scores correlated significantly with the grey matter volume at the right precentral gyrus. Discriminant function analysis identified three visuospatial measures: Visual Object and Space Perception and Benson figure copy and recall test, which classified 79.7% (94/118) of primary progressive aphasia into their specific variant. This study shows that each primary progressive aphasia variant also carries a distinctive visuospatial cognitive profile that corresponds with grey matter volumetric changes and in turn can be largely represented by their performance on the visuomotor, visuospatial-memory and executive functions., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2022
- Full Text
- View/download PDF
33. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease.
- Author
-
Spina S, La Joie R, Petersen C, Nolan AL, Cuevas D, Cosme C, Hepker M, Hwang JH, Miller ZA, Huang EJ, Karydas AM, Grant H, Boxer AL, Gorno-Tempini ML, Rosen HJ, Kramer JH, Miller BL, Seeley WW, Rabinovici GD, and Grinberg LT
- Subjects
- Age of Onset, Aged, Alzheimer Disease pathology, Comorbidity, Female, Humans, Male, Middle Aged, Alzheimer Disease epidemiology, Brain Diseases epidemiology
- Abstract
Co-pathologies play an important role in the expression of the Alzheimer's disease clinical phenotype and may influence treatment efficacy. Early-onset Alzheimer's disease, defined as manifesting before age 65, is viewed as a relatively pure form of Alzheimer's disease with a more homogeneous neuropathological substrate. We sought to compare the frequency of common neuropathological diagnoses in a consecutive autopsy series of 96 patients with early-onset Alzheimer's disease (median age of onset = 55 years, 44 females) and 48 with late-onset Alzheimer's disease (median age of onset = 73 years, 14 females). The UCSF Neurodegenerative Disease Brain Bank database was reviewed to identify patients with a primary pathological diagnosis of Alzheimer's disease. Prevalence and stage of Lewy body disease, limbic age-related TDP-43 encephalopathy (LATE), argyrophilic grain disease, hippocampal sclerosis, cerebral amyloid angiopathy, and vascular brain injury were compared between the two cohorts. We found at least one non-Alzheimer's disease pathological diagnosis in 98% of patients with early-onset Alzheimer's disease (versus 100% of late onset), and the number of comorbid diagnoses per patient was lower in early-onset than in late-onset Alzheimer's disease (median = 2 versus 3, Mann-Whitney Z = 3.00, P = 0.002). Lewy body disease and cerebral amyloid angiopathy were common in both early and late onset Alzheimer's disease (cerebral amyloid angiopathy: 86% versus 79%, Fisher exact P = 0.33; Lewy body disease: 49% versus 42%, P = 0.48, respectively), although amygdala-predominant Lewy body disease was more common in early than late onset Alzheimer's disease (22% versus 6%, P = 0.02). In contrast, LATE (35% versus 8%, P < 0.001), hippocampal sclerosis (15% versus 3%, P = 0.02), argyrophilic grain disease (58% versus 41%, P = 0.052), and vascular brain injury (65% versus 39%, P = 0.004) were more common in late than in early onset Alzheimer's disease, respectively. The number of co-pathologies predicted worse cognitive performance at the time of death on Mini-Mental State Examination [1.4 points/pathology (95% confidence interval, CI -2.5 to -0.2) and Clinical Dementia Rating-Sum of Boxes (1.15 point/pathology, 95% CI 0.45 to 1.84)], across early and late onset cohorts. The effect of sex on the number of co-pathologies was not significant (P = 0.17). Prevalence of at least one APOE ε4 allele was similar across the two cohorts (52% and 54%) and was associated with a greater number of co-pathologies (+0.40, 95% CI 0.01 to 0.79, P = 0.047), independent of age of symptom onset, sex, and disease duration. Females showed higher density of neurofibrillary tangles compared to males, controlling for age of onset, APOE ε4, and disease duration. Our findings suggest that non-Alzheimer's disease pathological diagnoses play an important role in the clinical phenotype of early onset Alzheimer's disease with potentially significant implications for clinical practice and clinical trials design., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
34. Psychosis in neurodegenerative disease: differential patterns of hallucination and delusion symptoms.
- Author
-
Naasan G, Shdo SM, Rodriguez EM, Spina S, Grinberg L, Lopez L, Karydas A, Seeley WW, Miller BL, and Rankin KP
- Subjects
- Aged, Delusions epidemiology, Female, Hallucinations epidemiology, Humans, Male, Middle Aged, Prevalence, Psychotic Disorders epidemiology, Delusions etiology, Hallucinations etiology, Neurodegenerative Diseases complications, Psychotic Disorders etiology
- Abstract
Although psychosis is a defining feature of Lewy body disease, psychotic symptoms occur in a subset of patients with every major neurodegenerative disease. Few studies, however, have compared disease-related rates of psychosis prevalence in a large autopsy-based cohort, and it remains unclear how diseases differ with respect to the nature or content of the psychosis. We conducted a retrospective chart review of 372 patients with autopsy-confirmed neurodegenerative pathology: 111 with Alzheimer's disease, 59 with Lewy body disease and concomitant Alzheimer's disease, 133 with frontotemporal lobar degeneration (FTLD) with tau inclusions (including progressive supranuclear palsy, corticobasal degeneration or Pick's disease), and 69 with FTLD and TDP inclusions (FTLD-TDP, including types A-C). Psychosis content was classified by subtype, and the frequency of each subtype was compared among pathological diagnoses using logistic regression. A total of 111 of 372 patients had psychosis. Compared to other groups, patients with Lewy body disease/Alzheimer's disease pathology were significantly more likely to have hallucinations and were more likely to have more than one subtype of hallucination. Patients with Braak Parkinson stage 5-6 Lewy body disease were significantly more likely than those with no Lewy body disease to have visual hallucinations of misperception, peripheral hallucinations, hallucinations that moved, hallucinations of people/animals/objects, as well as delusions regarding a place and delusions of misidentification. The feeling of a presence occurred significantly more frequently in patients with Lewy body disease/Alzheimer's disease than all other pathologies. Patients with FTLD-TDP were significantly more likely to have delusions, and for the delusions to occur in the first 3 years of the disease, when compared to patients with Alzheimer's disease and FTLD-tau, though rates were not significantly greater than patients with Lewy body disease/Alzheimer's disease. Paranoia occurred more frequently in the FTLD-TDP and Lewy body disease/Alzheimer's disease categories compared to patients with Alzheimer's disease or FTLD-tau. Patients with FTLD-TDP pathology had delusions of misidentification as frequently as patients with Lewy body disease/Alzheimer's disease, and were significantly more likely to have self-elevating delusions such as grandiosity and erotomania compared to patients with other pathologies including FTLD-tau. These data show that the nature and content of psychosis can provide meaningful information about the underlying neurodegenerative pathology, emphasizing the importance of characterizing patients' psychoses for prediction of the neuropathological diagnosis, regardless of a patient's clinical syndrome., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
35. Smaller Volume in Left-Lateralized Brain Structures Correlates with Greater Experience of Negative Non-target Emotions in Neurodegenerative Diseases.
- Author
-
Chen KH, Hua AY, Lwi SJ, Haase CM, Rosen HJ, Miller BL, and Levenson RW
- Subjects
- Adult, Aged, Aged, 80 and over, Alzheimer Disease physiopathology, Alzheimer Disease psychology, Aphasia, Primary Progressive physiopathology, Aphasia, Primary Progressive psychology, Brain anatomy & histology, Brain Mapping, Caudate Nucleus anatomy & histology, Caudate Nucleus physiopathology, Cerebral Cortex anatomy & histology, Cerebral Cortex physiopathology, Female, Frontotemporal Dementia physiopathology, Frontotemporal Dementia psychology, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Psychomotor Performance, Putamen anatomy & histology, Putamen physiopathology, Brain physiopathology, Emotions, Functional Laterality, Neurodegenerative Diseases physiopathology, Neurodegenerative Diseases psychology
- Abstract
Subjective emotional experience that is congruent with a given situation (i.e., target emotions) is critical for human survival (e.g., feeling disgusted in response to contaminated food motivates withdrawal behaviors). Neurodegenerative diseases including frontotemporal dementia and Alzheimer's disease affect brain regions critical for cognitive and emotional functioning, resulting in increased experience of emotions incongruent with the situation (i.e., non-target emotions, such as feeling happy when seeing someone grieving). We examined neuroanatomical correlates of subjective experience of non-target emotions in 147 patients with neurodegenerative diseases and 26 healthy individuals. Participants watched three films intended to elicit particular target emotions and rated their experience of negative and positive target and non-target emotions after watching each film. We found that smaller volume in left hemisphere regions (e.g., caudate, putamen, and dorsal anterior insula) was associated with greater experience of negative non-target emotions. Follow-up analyses confirmed that these effects were left-lateralized. No correlates emerged for positive non-target emotions. These findings suggest that volume loss in left-hemisphere regions produces a more diffuse, incongruent experience of non-target emotions. These findings provide a potential neuroanatomical basis for understanding how subjective emotional experience is constructed in the brain and how this can be disrupted in neurodegenerative disease., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
36. Spatial Relationships between Molecular Pathology and Neurodegeneration in the Alzheimer's Disease Continuum.
- Author
-
Iaccarino L, La Joie R, Edwards L, Strom A, Schonhaut DR, Ossenkoppele R, Pham J, Mellinger T, Janabi M, Baker SL, Soleimani-Meigooni D, Rosen HJ, Miller BL, Jagust WJ, and Rabinovici GD
- Subjects
- Aged, Aged, 80 and over, Alzheimer Disease diagnostic imaging, Alzheimer Disease metabolism, Amyloid beta-Protein Precursor genetics, Amyloid beta-Protein Precursor metabolism, Cognitive Dysfunction diagnostic imaging, Cognitive Dysfunction metabolism, Cognitive Dysfunction pathology, Female, Gray Matter diagnostic imaging, Gray Matter pathology, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neurodegenerative Diseases diagnostic imaging, Neurodegenerative Diseases metabolism, Neuropsychological Tests, Pathology, Molecular, Positron-Emission Tomography, tau Proteins genetics, tau Proteins metabolism, Alzheimer Disease pathology, Neurodegenerative Diseases pathology
- Abstract
A deeper understanding of the spatial relationships of β-amyloid (Aβ), tau, and neurodegeneration in Alzheimer's disease (AD) could provide insight into pathogenesis and clinical trial design. We included 81 amyloid-positive patients (age 64.4 ± 9.5) diagnosed with AD dementia or mild cognitive impairment due to AD and available 11C-PiB (PIB), 18F-Flortaucipir (FTP),18F-FDG-PET, and 3T-MRI, and 31 amyloid-positive, cognitively normal participants (age 77.3 ± 6.5, no FDG-PET). W-score voxel-wise deviation maps were created and binarized for each imaging-modality (W > 1.64, P < 0.05) adjusting for age, sex, and total intracranial volume (sMRI-only) using amyloid-negative cognitively normal adults. For symptomatic patients, FDG-PET and atrophy W-maps were combined into neurodegeneration maps (ND). Aβ-pathology showed the greatest proportion of cortical gray matter suprathreshold voxels (spatial extent) for both symptomatic and asymptomatic participants (median 94-55%, respectively), followed by tau (79-11%) and neurodegeneration (41-3%). Amyloid > tau > neurodegeneration was the most frequent hierarchy for both groups (79-77%, respectively), followed by tau > amyloid > neurodegeneration (13-10%) and amyloid > neurodegeneration > tau (6-13%). For symptomatic participants, most abnormal voxels were PIB+/FTP+/ND- (median 35%), and the great majority of ND+ voxels (91%) colocalized with molecular pathology. Amyloid spatially exceeded tau and neurodegeneration, with individual heterogeneities. Molecular pathology and neurodegeneration showed a progressive overlap along AD course, indicating shared vulnerabilities or synergistic toxic mechanisms., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
37. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases.
- Author
-
Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V, Boxer AL, Edwards L, Eser R, Gorno-Tempini ML, Jagust WJ, Janabi M, Kramer JH, Lesman-Segev OH, Mellinger T, Miller BL, Pham J, Rosen HJ, Spina S, Seeley WW, Strom A, Grinberg LT, and Rabinovici GD
- Subjects
- Adult, Aged, Alzheimer Disease pathology, Autopsy, Carbolines, Disease Progression, Female, Frontotemporal Lobar Degeneration diagnostic imaging, Frontotemporal Lobar Degeneration pathology, Gray Matter diagnostic imaging, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neurodegenerative Diseases pathology, Neurofibrillary Tangles pathology, Radiopharmaceuticals, Supranuclear Palsy, Progressive diagnostic imaging, Supranuclear Palsy, Progressive pathology, Tauopathies diagnostic imaging, Tauopathies pathology, Alzheimer Disease diagnostic imaging, Neurodegenerative Diseases diagnostic imaging, Positron-Emission Tomography methods
- Abstract
Few studies have evaluated the relationship between in vivo18F-flortaucipir PET and post-mortem pathology. We sought to compare antemortem 18F-flortaucipir PET to neuropathology in a consecutive series of patients with a broad spectrum of neurodegenerative conditions. Twenty patients were included [mean age at PET 61 years (range 34-76); eight female; median PET-to-autopsy interval of 30 months (range 4-59 months)]. Eight patients had primary Alzheimer's disease pathology, nine had non-Alzheimer tauopathies (progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and frontotemporal lobar degeneration with MAPT mutations), and three had non-tau frontotemporal lobar degeneration. Using an inferior cerebellar grey matter reference, 80-100-min 18F-flortaucipir PET standardized uptake value ratio (SUVR) images were created. Mean SUVRs were calculated for progressive supranuclear palsy, corticobasal degeneration, and neurofibrillary tangle Braak stage regions of interest, and these values were compared to SUVRs derived from young, non-autopsy, cognitively normal controls used as a standard for tau negativity. W-score maps were generated to highlight areas of increased tracer retention compared to cognitively normal controls, adjusting for age as a covariate. Autopsies were performed blinded to PET results. There was excellent correspondence between areas of 18F-flortaucipir retention, on both SUVR images and W-score maps, and neurofibrillary tangle distribution in patients with primary Alzheimer's disease neuropathology. Patients with non-Alzheimer tauopathies and non-tau frontotemporal lobar degeneration showed a range of tracer retention that was less than Alzheimer's disease, though higher than age-matched, cognitively normal controls. Overall, binding across both tau-positive and tau-negative non-Alzheimer disorders did not reliably correspond with post-mortem tau pathology. 18F-flortaucipir SUVRs in subcortical regions were higher in autopsy-confirmed progressive supranuclear palsy and corticobasal degeneration than in controls, but were similar to values measured in Alzheimer's disease and tau-negative neurodegenerative pathologies. Quantification of 18F-flortaucipir SUVR images at Braak stage regions of interest reliably detected advanced Alzheimer's (Braak VI) pathology. However, patients with earlier Braak stages (Braak I-IV) did not show elevated tracer uptake in these regions compared to young, tau-negative controls. In summary, PET-to-autopsy comparisons confirm that 18F-flortaucipir PET is a reliable biomarker of advanced Braak tau pathology in Alzheimer's disease. The tracer cannot reliably differentiate non-Alzheimer tauopathies and may not detect early Braak stages of neurofibrillary tangle pathology., (© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
38. Emotion Recognition and Reactivity in Persons With Neurodegenerative Disease Are Differentially Associated With Caregiver Health.
- Author
-
Brown CL, Wells JL, Hua AY, Chen KH, Merrilees J, Miller BL, and Levenson RW
- Subjects
- Caregivers, Emotions, Humans, Self Report, Mental Disorders, Neurodegenerative Diseases
- Abstract
Background and Objectives: Motivated by the high rates of health problems found among caregivers of persons with neurodegenerative disease, we examined associations between deficits in two aspects of care recipients' socioemotional functioning and their caregivers' health., Research Design and Methods: In 2 studies with independent samples (N = 171 and 73 dyads), caregivers reported on care recipients' emotion recognition and emotional reactivity. Caregiver health was assessed using both self-report measures (Studies 1 and 2) and autonomic nervous system indices (Study 2)., Results: Lower emotion recognition in care recipients was linearly associated with worse self-reported health, faster resting heart rate, and greater physiological reactivity to an acoustic startle stimulus in caregivers. These effects held after accounting for a variety of risk factors for poor caregiver health, including care recipients' neuropsychiatric symptoms. Emotional reactivity showed a quadratic association with health, such that the lowest and highest levels of emotional reactivity in care recipients were associated with lower self-reported health in caregivers., Discussion and Implications: Results shed light on the unique associations between two aspects of care recipients' emotional functioning and caregivers' health. Findings suggest potential ways to identify and help caregivers at heightened risk for adverse health outcomes., (© The Author(s) 2020. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
39. Salience Network Atrophy Links Neuron Type-Specific Pathobiology to Loss of Empathy in Frontotemporal Dementia.
- Author
-
Pasquini L, Nana AL, Toller G, Brown JA, Deng J, Staffaroni A, Kim EJ, Hwang JL, Li L, Park Y, Gaus SE, Allen I, Sturm VE, Spina S, Grinberg LT, Rankin KP, Kramer JH, Rosen HJ, Miller BL, and Seeley WW
- Subjects
- Amyotrophic Lateral Sclerosis pathology, Amyotrophic Lateral Sclerosis psychology, Atrophy, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neural Pathways pathology, Neuropsychological Tests, Brain pathology, Empathy, Frontotemporal Dementia pathology, Frontotemporal Dementia psychology, Neurons pathology
- Abstract
Each neurodegenerative syndrome reflects a stereotyped pattern of cellular, regional, and large-scale brain network degeneration. In behavioral variant of frontotemporal dementia (bvFTD), a disorder of social-emotional function, von Economo neurons (VENs), and fork cells are among the initial neuronal targets. These large layer 5 projection neurons are concentrated in the anterior cingulate and frontoinsular (FI) cortices, regions that anchor the salience network, a large-scale system linked to social-emotional function. Here, we studied patients with bvFTD, amyotrophic lateral sclerosis (ALS), or both, given that these syndromes share common pathobiological and genetic factors. Our goal was to determine how neuron type-specific TAR DNA-binding protein of 43 kDa (TDP-43) pathobiology relates to atrophy in specific brain structures and to loss of emotional empathy, a cardinal feature of bvFTD. We combined questionnaire-based empathy assessments, in vivo structural MR imaging, and quantitative histopathological data from 16 patients across the bvFTD/ALS spectrum. We show that TDP-43 pathobiology within right FI VENs and fork cells is associated with salience network atrophy spanning insular, medial frontal, and thalamic regions. Gray matter degeneration within these structures mediated loss of emotional empathy, suggesting a chain of influence linking the cellular, regional/network, and behavioral levels in producing signature bvFTD clinical features., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
40. Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy.
- Author
-
Firth NC, Primativo S, Marinescu RV, Shakespeare TJ, Suarez-Gonzalez A, Lehmann M, Carton A, Ocal D, Pavisic I, Paterson RW, Slattery CF, Foulkes AJM, Ridha BH, Gil-Néciga E, Oxtoby NP, Young AL, Modat M, Cardoso MJ, Ourselin S, Ryan NS, Miller BL, Rabinovici GD, Warrington EK, Rossor MN, Fox NC, Warren JD, Alexander DC, Schott JM, Yong KXX, and Crutch SJ
- Subjects
- Alzheimer Disease complications, Case-Control Studies, Cognitive Dysfunction complications, Disease Progression, Female, Humans, Longitudinal Studies, Magnetic Resonance Imaging, Male, Middle Aged, Models, Neurological, Neuropsychological Tests, Alzheimer Disease pathology, Cerebral Cortex pathology, Cognitive Dysfunction pathology
- Abstract
Posterior cortical atrophy is a clinico-radiological syndrome characterized by progressive decline in visual processing and atrophy of posterior brain regions. With the majority of cases attributable to Alzheimer's disease and recent evidence for genetic risk factors specifically related to posterior cortical atrophy, the syndrome can provide important insights into selective vulnerability and phenotypic diversity. The present study describes the first major longitudinal investigation of posterior cortical atrophy disease progression. Three hundred and sixty-one individuals (117 posterior cortical atrophy, 106 typical Alzheimer's disease, 138 controls) fulfilling consensus criteria for posterior cortical atrophy-pure and typical Alzheimer's disease were recruited from three centres in the UK, Spain and USA. Participants underwent up to six annual assessments involving MRI scans and neuropsychological testing. We constructed longitudinal trajectories of regional brain volumes within posterior cortical atrophy and typical Alzheimer's disease using differential equation models. We compared and contrasted the order in which regional brain volumes become abnormal within posterior cortical atrophy and typical Alzheimer's disease using event-based models. We also examined trajectories of cognitive decline and the order in which different cognitive tests show abnormality using the same models. Temporally aligned trajectories for eight regions of interest revealed distinct (P < 0.002) patterns of progression in posterior cortical atrophy and typical Alzheimer's disease. Patients with posterior cortical atrophy showed early occipital and parietal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion leading to tissue loss of comparable extent later. Hippocampal, entorhinal and frontal regions underwent a lower rate of change and never approached the extent of posterior cortical involvement. Patients with typical Alzheimer's disease showed early hippocampal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion. Cognitive models showed tests sensitive to visuospatial dysfunction declined earlier in posterior cortical atrophy than typical Alzheimer's disease whilst tests sensitive to working memory impairment declined earlier in typical Alzheimer's disease than posterior cortical atrophy. These findings indicate that posterior cortical atrophy and typical Alzheimer's disease have distinct sites of onset and different profiles of spatial and temporal progression. The ordering of disease events both motivates investigation of biological factors underpinning phenotypic heterogeneity, and informs the selection of measures for clinical trials in posterior cortical atrophy., (© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2019
- Full Text
- View/download PDF
41. Neuropathological correlates of structural and functional imaging biomarkers in 4-repeat tauopathies.
- Author
-
Spina S, Brown JA, Deng J, Gardner RC, Nana AL, Hwang JL, Gaus SE, Huang EJ, Kramer JH, Rosen HJ, Kornak J, Neuhaus J, Miller BL, Grinberg LT, Boxer AL, and Seeley WW
- Subjects
- Aged, Atrophy pathology, Basal Ganglia pathology, Biomarkers metabolism, Cerebral Cortex pathology, Female, Humans, Magnetic Resonance Imaging, Male, Nerve Degeneration metabolism, Nerve Degeneration pathology, Neural Pathways metabolism, Neural Pathways pathology, Neuroimaging, Supranuclear Palsy, Progressive nursing, Supranuclear Palsy, Progressive pathology, Tauopathies metabolism, Tauopathies pathology, tau Proteins metabolism
- Abstract
Neurodegenerative dementia syndromes are characterized by spreading of pathological protein deposition along syndrome-specific neural networks. Structural and functional MRI measures can assess the integrity of these networks and have been proposed as biomarkers of disease progression for clinical trials. The relationship between in vivo imaging measures and pathological features, at the single subject level, remains largely unknown. Patient-specific maps of atrophy and seed-based intrinsic connectivity disruption, as compared to normal controls, were obtained for 27 patients subsequently diagnosed with progressive supranuclear palsy (n = 16, seven males, age at death 68.9 ± 6.0 years, imaging-to-pathology interval = 670.2 ± 425.1 days) or corticobasal degeneration (n = 11, two males, age at death 66.7 ± 5.4 years, imaging-to-pathology interval = 696.2 ± 482.2 days). A linear mixed effect model with crossed random effects was used to test regional and single-subject level associations between post-mortem regional measures of neurodegeneration and tau inclusion burden, on the one hand, and regional volume loss and seed-based intrinsic connectivity reduction, on the other. A significant association was found between tau inclusion burden and in vivo volume loss, at the regional level and independent of neurodegeneration severity, in both progressive supranuclear palsy [n = 340 regions; beta 0.036; 95% confidence interval (CI): 0.001, 0.072; P = 0.046] and corticobasal degeneration (n = 215 regions; beta 0.044; 95% CI: 0.009, 0.079; P = 0.013). We also found a significant association between post-mortem neurodegeneration and in vivo volume loss in both progressive supranuclear palsy (n = 340 regions; beta 0.155; 95% CI: 0.061, 0.248; P = 0.001) and corticobasal degeneration (n = 215 regions; beta 0.277; 95% CI: 0.104, 0.450; P = 0.002). We found a significant association between regional neurodegeneration and intrinsic connectivity dysfunction in corticobasal degeneration (n = 215 regions; beta 0.074; 95% CI: 0.005, 0.143; P = 0.035), but no other associations between post-mortem measures of tauopathy and intrinsic connectivity dysfunction reached statistical significance. Our data suggest that in vivo structural imaging measures reflect independent contributions from neurodegeneration and tau burden in progressive supranuclear palsy and corticobasal degeneration. Seed-based measures of intrinsic connectivity dysfunction showed less reliable predictive value when used as in vivo biomarkers of tauopathy. The findings provide important guidance for the use of imaging biomarkers as indirect in vivo assays of microscopic pathology., (© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
42. Cortical microstructure in the behavioural variant of frontotemporal dementia: looking beyond atrophy.
- Author
-
Illán-Gala I, Montal V, Borrego-Écija S, Vilaplana E, Pegueroles J, Alcolea D, Sánchez-Saudinós B, Clarimón J, Turón-Sans J, Bargalló N, González-Ortiz S, Rosen HJ, Gorno-Tempini ML, Miller BL, Lladó A, Rojas-García R, Blesa R, Sánchez-Valle R, Lleó A, and Fortea J
- Subjects
- Aged, Brain pathology, Cohort Studies, Diffusion Magnetic Resonance Imaging methods, Diffusion Tensor Imaging methods, Female, Frontotemporal Dementia metabolism, Frontotemporal Lobar Degeneration pathology, Humans, Longitudinal Studies, Magnetic Resonance Imaging methods, Male, Middle Aged, White Matter pathology, Alzheimer Disease pathology, Atrophy pathology, Frontotemporal Dementia pathology
- Abstract
Cortical mean diffusivity has been proposed as a novel biomarker for the study of the cortical microstructure in Alzheimer's disease. In this multicentre study, we aimed to assess the cortical microstructural changes in the behavioural variant of frontotemporal dementia (bvFTD); and to correlate cortical mean diffusivity with clinical measures of disease severity and CSF biomarkers (neurofilament light and the soluble fraction beta of the amyloid precursor protein). We included 148 participants with a 3 T MRI and appropriate structural and diffusion weighted imaging sequences: 70 patients with bvFTD and 78 age-matched cognitively healthy controls. The modified frontotemporal lobar degeneration clinical dementia rating was obtained as a measure of disease severity. A subset of patients also underwent a lumbar puncture for CSF biomarker analysis. Two independent raters blind to the clinical data determined the presence of significant frontotemporal atrophy to dichotomize the participants into possible or probable bvFTD. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. We compared cortical thickness and cortical mean diffusivity between bvFTD (both using the whole sample and probable and possible bvFTD subgroups) and controls. Then we computed the Cohen's d effect size for both cortical thickness and cortical mean diffusivity. We also performed correlation analyses with the modified frontotemporal lobar degeneration clinical dementia rating score and CSF neuronal biomarkers. The cortical mean diffusivity maps, in the whole cohort and in the probable bvFTD subgroup, showed widespread areas with increased cortical mean diffusivity that partially overlapped with cortical thickness, but further expanded to other bvFTD-related regions. In the possible bvFTD subgroup, we found increased cortical mean diffusivity in frontotemporal regions, but only minimal loss of cortical thickness. The effect sizes of cortical mean diffusivity were notably higher than the effect sizes of cortical thickness in the areas that are typically involved in bvFTD. In the whole bvFTD group, both cortical mean diffusivity and cortical thickness correlated with measures of disease severity and CSF biomarkers. However, the areas of correlation with cortical mean diffusivity were more extensive. In the possible bvFTD subgroup, only cortical mean diffusivity correlated with the modified frontotemporal lobar degeneration clinical dementia rating. Our data suggest that cortical mean diffusivity could be a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in bvFTD. Further longitudinal studies should determine the diagnostic and prognostic utility of this novel neuroimaging biomarker., (© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
43. Polygenic hazard score, amyloid deposition and Alzheimer's neurodegeneration.
- Author
-
Tan CH, Bonham LW, Fan CC, Mormino EC, Sugrue LP, Broce IJ, Hess CP, Yokoyama JS, Rabinovici GD, Miller BL, Yaffe K, Schellenberg GD, Kauppi K, Holland D, McEvoy LK, Kukull WA, Tosun D, Weiner MW, Sperling RA, Bennett DA, Hyman BT, Andreassen OA, Dale AM, and Desikan RS
- Subjects
- Aged, Aged, 80 and over, Female, Humans, Male, Neurodegenerative Diseases diagnostic imaging, Neurodegenerative Diseases genetics, Alzheimer Disease diagnostic imaging, Alzheimer Disease genetics, Multifactorial Inheritance genetics, Plaque, Amyloid diagnostic imaging, Plaque, Amyloid genetics
- Abstract
Mounting evidence indicates that the polygenic basis of late-onset Alzheimer's disease can be harnessed to identify individuals at greatest risk for cognitive decline. We have previously developed and validated a polygenic hazard score comprising of 31 single nucleotide polymorphisms for predicting Alzheimer's disease dementia age of onset. In this study, we examined whether polygenic hazard scores are associated with: (i) regional tracer uptake using amyloid PET; (ii) regional volume loss using longitudinal MRI; (iii) post-mortem regional amyloid-β protein and tau associated neurofibrillary tangles; and (iv) four common non-Alzheimer's pathologies. Even after accounting for APOE, we found a strong association between polygenic hazard scores and amyloid PET standard uptake volume ratio with the largest effects within frontal cortical regions in 980 older individuals across the disease spectrum, and longitudinal MRI volume loss within the entorhinal cortex in 607 older individuals across the disease spectrum. We also found that higher polygenic hazard scores were associated with greater rates of cognitive and clinical decline in 632 non-demented older individuals, even after controlling for APOE status, frontal amyloid PET and entorhinal cortex volume. In addition, the combined model that included polygenic hazard scores, frontal amyloid PET and entorhinal cortex volume resulted in a better fit compared to a model with only imaging markers. Neuropathologically, we found that polygenic hazard scores were associated with regional post-mortem amyloid load and neuronal neurofibrillary tangles, even after accounting for APOE, validating our imaging findings. Lastly, polygenic hazard scores were associated with Lewy body and cerebrovascular pathology. Beyond APOE, we show that in living subjects, polygenic hazard scores were associated with amyloid deposition and neurodegeneration in susceptible brain regions. Polygenic hazard scores may also be useful for the identification of individuals at the highest risk for developing multi-aetiological dementia.
- Published
- 2019
- Full Text
- View/download PDF
44. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials.
- Author
-
Staffaroni AM, Ljubenkov PA, Kornak J, Cobigo Y, Datta S, Marx G, Walters SM, Chiang K, Olney N, Elahi FM, Knopman DS, Dickerson BC, Boeve BF, Gorno-Tempini ML, Spina S, Grinberg LT, Seeley WW, Miller BL, Kramer JH, Boxer AL, and Rosen HJ
- Subjects
- Aged, Cross-Sectional Studies, Diffusion Tensor Imaging methods, Diffusion Tensor Imaging trends, Endpoint Determination trends, Female, Follow-Up Studies, Humans, Longitudinal Studies, Magnetic Resonance Imaging methods, Magnetic Resonance Imaging trends, Male, Middle Aged, Multimodal Imaging trends, Endpoint Determination methods, Frontotemporal Dementia diagnostic imaging, Frontotemporal Dementia epidemiology, Multimodal Imaging methods
- Abstract
Frontotemporal dementia refers to a group of progressive neurodegenerative syndromes usually caused by the accumulation of pathological tau or TDP-43 proteins. The effects of these proteins in the brain are complex, and each can present with several different clinical syndromes. Clinical efficacy trials of drugs targeting these proteins must use endpoints that are meaningful to all participants despite the variability in symptoms across patients. There are many candidate clinical measures, including neuropsychological scores and functional measures. Brain imaging is another potentially attractive outcome that can be precisely quantified and provides evidence of disease modification. Most imaging studies in frontotemporal dementia have been cross-sectional, and few have compared longitudinal changes in cortical volume with changes in other measures such as perfusion and white matter integrity. The current study characterized longitudinal changes in 161 patients with three frontotemporal dementia syndromes: behavioural variant frontotemporal dementia (n = 77) and the semantic (n = 45) and non-fluent (n = 39) variants of primary progressive aphasia. Visits included comprehensive neuropsychological and functional assessment, structural MRI (3 T), diffusion tensor imaging, and arterial spin labelled perfusion imaging. The goal was to identify measures that are appropriate as clinical trial outcomes for each group, as well as those that might be appropriate for trials that would include more than one of these groups. Linear mixed effects models were used to estimate changes in each measure, and to examine the correlation between imaging and clinical changes. Sample sizes were estimated based on the observed effects for theoretical clinical trials using bootstrapping techniques to provide 95% confidence intervals for these estimates. Declines in functional and neuropsychological measures, as well as frontal and temporal cortical volumes and white matter microstructure were detected in all groups. Imaging changes were statistically significantly correlated with, and explained a substantial portion of variance in, the change in most clinical measures. Perfusion and diffusion tensor imaging accounted for variation in clinical decline beyond volume alone. Sample size estimates for atrophy and diffusion imaging were comparable to clinical measures. Corpus callosal fractional anisotropy led to the lowest sample size estimates for all three syndromes. These findings provide further guidance on selection of trial endpoints for studies in frontotemporal dementia and support the use of neuroimaging, particularly structural and diffusion weighted imaging, as biomarkers. Diffusion and perfusion imaging appear to offer additional utility for explaining clinical change beyond the variance explained by volume alone, arguing for considering multimodal imaging in treatment trials.
- Published
- 2019
- Full Text
- View/download PDF
45. Cortical developmental abnormalities in logopenic variant primary progressive aphasia with dyslexia.
- Author
-
Miller ZA, Spina S, Pakvasa M, Rosenberg L, Watson C, Mandelli ML, Paredes MF, Joie R, Rabinovici GD, Rosen HJ, Grinberg LT, Huang EJ, Miller BL, Seeley WW, and Gorno-Tempini ML
- Abstract
An increased prevalence of dyslexia has been observed in individuals diagnosed with primary progressive aphasia, most notably the logopenic variant primary progressive aphasia. The underlying pathology most commonly associated with logopenic variant primary progressive aphasia is Alzheimer's disease. In this clinical case report series, we describe the neuropathological findings of three patients with logopenic variant primary progressive aphasia and developmental dyslexia, each demonstrating a pattern of cerebrocortical microdysgenesis, reminiscent of findings first reported in dyslexic individuals, alongside expected Alzheimer's disease pathology. Neurodevelopmental and most severe Alzheimer's disease pathological changes overlapped within perisylvian brain regions, areas associated with phonological deficits in both logopenic variant primary progressive aphasia and dyslexia. These three cases with pathological findings support the hypothesis that early-life neurodevelopmental changes might influence later-life susceptibility to neurodegenerative disease and could contribute to non-amnestic, early age-of-onset presentations of Alzheimer's disease. Larger studies investigating neurobiological vulnerability across the lifespan are needed., (© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2019
- Full Text
- View/download PDF
46. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers.
- Author
-
Zhang M, Ferrari R, Tartaglia MC, Keith J, Surace EI, Wolf U, Sato C, Grinberg M, Liang Y, Xi Z, Dupont K, McGoldrick P, Weichert A, McKeever PM, Schneider R, McCorkindale MD, Manzoni C, Rademakers R, Graff-Radford NR, Dickson DW, Parisi JE, Boeve BF, Petersen RC, Miller BL, Seeley WW, van Swieten JC, van Rooij J, Pijnenburg Y, van der Zee J, Van Broeckhoven C, Le Ber I, Van Deerlin V, Suh E, Rohrer JD, Mead S, Graff C, Öijerstedt L, Pickering-Brown S, Rollinson S, Rossi G, Tagliavini F, Brooks WS, Dobson-Stone C, Halliday GM, Hodges JR, Piguet O, Binetti G, Benussi L, Ghidoni R, Nacmias B, Sorbi S, Bruni AC, Galimberti D, Scarpini E, Rainero I, Rubino E, Clarimon J, Lleó A, Ruiz A, Hernández I, Pastor P, Diez-Fairen M, Borroni B, Pasquier F, Deramecourt V, Lebouvier T, Perneczky R, Diehl-Schmid J, Grafman J, Huey ED, Mayeux R, Nalls MA, Hernandez D, Singleton A, Momeni P, Zeng Z, Hardy J, Robertson J, Zinman L, and Rogaeva E
- Subjects
- Age of Onset, Aged, CpG Islands, DNA Methylation, Female, Genotype, Heterozygote, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Amyotrophic Lateral Sclerosis genetics, C9orf72 Protein genetics, Frontotemporal Dementia genetics, Gene Expression Regulation genetics
- Abstract
The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
- Published
- 2018
- Full Text
- View/download PDF
47. Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia.
- Author
-
Henry ML, Hubbard HI, Grasso SM, Mandelli ML, Wilson SM, Sathishkumar MT, Fridriksson J, Daigle W, Boxer AL, Miller BL, and Gorno-Tempini ML
- Subjects
- Aged, Aphasia, Primary Progressive diagnostic imaging, Aphasia, Wernicke diagnostic imaging, Female, Follow-Up Studies, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Neuropsychological Tests, Treatment Outcome, Aphasia, Primary Progressive physiopathology, Aphasia, Primary Progressive rehabilitation, Aphasia, Wernicke physiopathology, Speech physiology, Speech Therapy methods
- Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) presents with a gradual decline in grammar and motor speech resulting from selective degeneration of speech-language regions in the brain. There has been considerable progress in identifying treatment approaches to remediate language deficits in other primary progressive aphasia variants; however, interventions for the core deficits in nfvPPA have yet to be systematically investigated. Further, the neural mechanisms that support behavioural restitution in the context of neurodegeneration are not well understood. We examined the immediate and long-term benefits of video implemented script training for aphasia (VISTA) in 10 individuals with nfvPPA. The treatment approach involved repeated rehearsal of individualized scripts via structured treatment with a clinician as well as intensive home practice with an audiovisual model using 'speech entrainment'. We evaluated accuracy of script production as well as overall intelligibility and grammaticality for trained and untrained scripts. These measures and standardized test scores were collected at post-treatment and 3-, 6-, and 12-month follow-up visits. Treatment resulted in significant improvement in production of correct, intelligible scripted words for trained topics, a reduction in grammatical errors for trained topics, and an overall increase in intelligibility for trained as well as untrained topics at post-treatment. Follow-up testing revealed maintenance of gains for trained scripts up to 1 year post-treatment on the primary outcome measure. Performance on untrained scripts and standardized tests remained relatively stable during the follow-up period, indicating that treatment helped to stabilize speech and language despite disease progression. To identify neural predictors of responsiveness to intervention, we examined treatment effect sizes relative to grey matter volumes in regions of interest derived from a previously identified speech production network. Regions of significant atrophy within this network included bilateral inferior frontal cortices and supplementary motor area as well as left striatum. Volumes in a left middle/inferior temporal region of interest were significantly correlated with the magnitude of treatment effects. This region, which was relatively spared anatomically in nfvPPA patients, has been implicated in syntactic production as well as visuo-motor facilitation of speech. This is the first group study to document the benefits of behavioural intervention that targets both linguistic and motoric deficits in nfvPPA. Findings indicate that behavioural intervention may result in lasting and generalized improvement of communicative function in individuals with neurodegenerative disease and that the integrity of spared regions within the speech-language network may be an important predictor of treatment response.
- Published
- 2018
- Full Text
- View/download PDF
48. Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study.
- Author
-
Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK, Walsh CM, Rajana H, Oh J, Theofilas P, Seeley WW, Miller BL, Neylan TC, Heinsen H, and Grinberg LT
- Subjects
- Aged, Aged, 80 and over, Autopsy, Female, Humans, Male, Middle Aged, Neurotransmitter Agents metabolism, Retrospective Studies, Brain Stem pathology, Tauopathies pathology, tau Proteins metabolism
- Abstract
The brainstem nuclei of the reticular formation (RF) are critical for regulating homeostasis, behavior, and cognition. RF degenerates in tauopathies including Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although the burden of phopho-tau inclusion is high across these diseases, suggesting a similar vulnerability pattern, a distinct RF-associated clinical phenotype in these diseases indicates the opposite. To compare patterns of RF selective vulnerability to tauopathies, we analyzed 5 RF nuclei in tissue from 14 AD, 14 CBD, 10 PSP, and 3 control cases. Multidimensional quantitative analysis unraveled discernable differences on how these nuclei are vulnerable to AD, CBD, and PSP. For instance, PSP and CBD accrued more tau inclusions than AD in locus coeruleus, suggesting a lower vulnerability to AD. However, locus coeruleus neuronal loss in AD was so extreme that few neurons remained to develop aggregates. Likewise, tau burden in gigantocellular nucleus was low in AD and high in PSP, but few GABAergic neurons were present in AD. This challenges the hypothesis that gigantocellular nucleus neuronal loss underlies REM behavioral disorders because REM behavioral disorders rarely manifests in AD. This study provides foundation for characterizing the clinical consequences of RF degeneration in tauopathies and guiding customized treatment., (© 2018 American Association of Neuropathologists, Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
49. Clinicopathological correlations in behavioural variant frontotemporal dementia.
- Author
-
Perry DC, Brown JA, Possin KL, Datta S, Trujillo A, Radke A, Karydas A, Kornak J, Sias AC, Rabinovici GD, Gorno-Tempini ML, Boxer AL, De May M, Rankin KP, Sturm VE, Lee SE, Matthews BR, Kao AW, Vossel KA, Tartaglia MC, Miller ZA, Seo SW, Sidhu M, Gaus SE, Nana AL, Vargas JNS, Hwang JL, Ossenkoppele R, Brown AB, Huang EJ, Coppola G, Rosen HJ, Geschwind D, Trojanowski JQ, Grinberg LT, Kramer JH, Miller BL, and Seeley WW
- Subjects
- Adult, Aged, Aged, 80 and over, Alzheimer Disease diagnostic imaging, Alzheimer Disease psychology, Amyotrophic Lateral Sclerosis diagnostic imaging, Amyotrophic Lateral Sclerosis psychology, Autopsy, Brain diagnostic imaging, Female, Frontotemporal Dementia diagnostic imaging, Frontotemporal Dementia psychology, Frontotemporal Lobar Degeneration diagnostic imaging, Frontotemporal Lobar Degeneration pathology, Frontotemporal Lobar Degeneration psychology, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Organ Size, Pick Disease of the Brain diagnostic imaging, Pick Disease of the Brain psychology, Supranuclear Palsy, Progressive diagnostic imaging, Supranuclear Palsy, Progressive psychology, Alzheimer Disease pathology, Amyotrophic Lateral Sclerosis pathology, Brain pathology, Frontotemporal Dementia pathology, Pick Disease of the Brain pathology, Supranuclear Palsy, Progressive pathology
- Abstract
Accurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data., (© The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
50. Reward deficits in behavioural variant frontotemporal dementia include insensitivity to negative stimuli.
- Author
-
Perry DC, Datta S, Sturm VE, Wood KA, Zakrzewski J, Seeley WW, Miller BL, Kramer JH, and Rosen HJ
- Subjects
- Aged, Amygdala diagnostic imaging, Amygdala pathology, Atrophy, Brain pathology, Case-Control Studies, Cerebral Cortex diagnostic imaging, Cerebral Cortex pathology, Female, Frontal Lobe diagnostic imaging, Frontal Lobe pathology, Frontotemporal Dementia diagnostic imaging, Frontotemporal Dementia pathology, Frontotemporal Dementia psychology, Galvanic Skin Response, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Odorants, Brain diagnostic imaging, Frontotemporal Dementia physiopathology, Reward
- Abstract
During reward processing individuals weigh positive and negative features of a stimulus to determine whether they will pursue or avoid it. Though patients with behavioural variant frontotemporal dementia display changes in their pursuit of rewards, such as food, alcohol, money, and sex, the basis for these shifts is not clearly established. In particular, it is unknown whether patients' behaviour results from excessive focus on rewards, insensitivity to punishment, or to dysfunction in a particular stage of reward processing, such as anticipation, consumption, or action selection. Our goal was to determine the nature of the reward deficit in behavioural variant frontotemporal dementia and its underlying anatomy. We devised a series of tasks involving pleasant, unpleasant, and neutral olfactory stimuli, designed to separate distinct phases of reward processing. In a group of 25 patients with behavioural variant frontotemporal dementia and 21 control subjects, diagnosis by valence interactions revealed that patients with behavioural variant frontotemporal dementia rated unpleasant odours as less aversive than did controls and displayed lower skin conductance responses when anticipating an upcoming aversive odour. Subjective pleasantness ratings and skin conductance responses did not differ between behavioural variant frontotemporal dementia and controls for pleasant or neutral smells. In a task designed to measure the effort subjects would expend to smell or avoid smelling a stimulus, patients with behavioural variant frontotemporal dementia were less motivated, and therefore less successful than control subjects, at avoiding what they preferred not to smell, but had equivalent success at obtaining stimuli they found rewarding. Voxel-based morphometry of patients with behavioural variant frontotemporal dementia revealed that the inability to subjectively differentiate the valence of pleasant and unpleasant odours correlated with atrophy in right ventral mid-insula and right amygdala. High pleasantness ratings of unpleasant stimuli correlated with left dorsal anterior insula and frontal pole atrophy. These findings indicate that insensitivity to negative information may be a key component of the reward-seeking behaviours in behavioural variant frontotemporal dementia, and may relate to degeneration of structures that are involved in representing the emotional salience of sensory information., (© The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.