1. Dysregulation of Components of the Inflammasome Machinery After Bariatric Surgery: Novel Targets for a Chronic Disease.
- Author
-
Herrero-Aguayo V, Sáez-Martínez P, López-Cánovas JL, Prados-Carmona JJ, Alcántara-Laguna MD, López FL, Molina-Puerta MJ, Calañas-Continente A, Membrives A, Castilla J, Ruiz-Ravelo J, Alonso-Echague R, Yubero-Serrano EM, Castaño JP, Gahete MD, Gálvez-Moreno MA, Luque RM, and Herrera-Martínez AD
- Subjects
- Adult, Biomarkers metabolism, Chronic Disease, Cohort Studies, Diabetes Mellitus, Type 2 etiology, Diabetes Mellitus, Type 2 metabolism, Dyslipidemias etiology, Dyslipidemias metabolism, Female, Follow-Up Studies, Gastrectomy adverse effects, Humans, Inflammasomes metabolism, Inflammation etiology, Inflammation metabolism, Leukocytes, Mononuclear metabolism, Male, Middle Aged, Obesity, Morbid pathology, Prognosis, Bariatric Surgery adverse effects, Diabetes Mellitus, Type 2 pathology, Dyslipidemias pathology, Inflammation pathology, Inflammation Mediators metabolism, Leukocytes, Mononuclear pathology, Obesity, Morbid surgery
- Abstract
Background: Obesity is a metabolic chronic disease with important associated morbidities and mortality. Bariatric surgery is the most effective treatment for maintaining long-term weight loss in severe obesity and, consequently, for decreasing obesity-related complications, including chronic inflammation., Aim: To explore changes in components of the inflammasome machinery after bariatric surgery and their relation with clinical/biochemical parameters at baseline and 6 months after bariatric surgery., Patients and Methods: Twenty-two patients with morbid-obesity that underwent bariatric surgery (sleeve gastrectomy and Roux-en-Y gastric bypass) were included. Epidemiological/clinical/anthropometric/biochemical evaluation was performed at baseline and 6 months after bariatric surgery. Inflammasome components and inflammatory-associated factors [nucleotide-binding oligomerization domain-like receptors (NLRs), inflammasome activation components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators) were evaluated in peripheral blood mononuclear cells (PBMCs) at baseline and 6 months after bariatric surgery. Clinical molecular correlations/associations were analyzed. Functional parameters (lipid accumulation/viability/apoptosis) were analyzed in response to specific inflammasome components silencing in liver HepG2 cells)., Results: A profound dysregulation of inflammasome components after bariatric surgery was found, especially in NLRs and cell-cycle and DNA damage regulators. Several components were associated with baseline metabolic comorbidities including type 2 diabetes (C-C motif chemokine ligand 2/C-X-C motif chemokine receptor 1/sirtuin 1), hypertension (absent in melanoma 2/ASC/purinergic receptor P2X 7), and dyslipidemia [C-X-C motif chemokine ligand 3 (CXCL3)/NLR family pyrin domain containing (NLRP) 7) and displayed changes in their molecular profile 6 months after bariatric surgery. The gene expression fingerprint of certain factors NLR family CARD domain containing 4 (NLRC4)/NLRP12/CXCL3)/C-C motif chemokine ligand 8/toll-like receptor 4) accurately differentiated pre- and postoperative PBMCs. Most changes were independent of the performed surgical technique. Silencing of NLRC4/NLRP12 resulted in altered lipid accumulation, apoptosis rate, and cell viability in HepG2 cells., Conclusion: Bariatric surgery induces a profound alteration in the gene expression pattern of components of the inflammasome machinery in PBMCs. Expression and changes of certain inflammasome components are associated to baseline metabolic comorbidities, including type 2 diabetes, and may be related to the improvement and reversion of some obesity-related comorbidities after bariatric surgery., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF